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ABSTRACT 
 
The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton 
cycle) as the power conversion system for it to achieve economic competitiveness as a 
GenIV nuclear system. The availability of controllable helium turbomachinery and compact 
heat exchangers are thus the critical enabling technology for the gas turbine cycle. The 
development of an initial reference design for an indirect helium cycle has been 
accomplished with the overriding constraint that this design could be built with existing 
technology and complies with all current codes and standards.  Using the initial reference 
design, limiting features were identified.  Finally, an optimized reference design was 
developed by identifying key advances in the technology that could reasonably be expected 
to be achieved with limited R&D.  This final reference design is an indirect, intercooled and 
recuperated cycle consisting of a three-shaft arrangement for the turbomachinery system. 
 
A critical part of the design process involved the interaction between individual component 
design and overall plant performance. The helium cycle overall efficiency is significantly 
influenced by performance of individual components.  Changes in the design of one 
component, a turbine for example, often required changes in other components.  To allow 
for the optimization of the overall design with these interdependencies, a detailed steady 
state and transient control model was developed.  The use of the steady state and transient 
models as a part of an iterative design process represents the key contribution of this work. 
 
A dynamic model, MPBRSim, has been developed.  The model integrates the reactor core 
and the power conversion system simultaneously.  Physical parameters such as the heat 
exchangers’ weights and practical performance maps such as the turbine characteristics and 
compressor characteristics are incorporated into the model.  The individual component 
models as well as the fully integrated model of the power conversion system have been 
verified with an industry-standard general thermal-fluid code Flownet. 
 
With respect to the dynamic model, bypass valve control and inventory control have been 
used as the primary control methods for the power conversion system.  By performing 
simulation using the dynamic model with the designed control scheme, the combination of 
bypass and inventory control was optimized to assure system stability within design 
temperature and pressure limits.  Bypass control allows for rapid control system response 
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while inventory control allows for ultimate steady state operation at part power very near the 
optimum operating point for the system.  Load transients simulations show that the indirect, 
three-shaft arrangement gas turbine power conversion system is stable and controllable. 
 
For the indirect cycle the intermediate heat exchanger (IHX) is the interface between the 
reactor and the turbomachinery systems.  As a part of the design effort the IHX was 
identified as the key component in the system.  Two technologies, printed circuit and 
compact plate-fin, were investigated that have the promise of meeting the design 
requirements for the system.  The reference design incorporates the possibility of using 
either technology although the compact plate-fin design was chosen for subsequent analysis.  
The thermal design and parametric analysis with an IHX and recuperator using the plate-fin 
configuration have been performed.  As a three-shaft arrangement, the turbo-shaft sets 
consist of a pair of turbine/compressor sets (high pressure and low pressure turbines with 
same-shaft compressor) and a power turbine coupled with a synchronous generator.  The 
turbines and compressors are all axial type and the shaft configuration is horizontal.  The 
core outlet/inlet temperatures are 900/520°C, and the optimum pressure ratio in the power 
conversion cycle is 2.9.  The design achieves a plant net efficiency of approximately 48%. 
 
 
Thesis Supervisor: Ronald G. Ballinger 
Title: Professor of Nuclear Engineering and Material Science and Engineering 
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1. Introduction 
 

1.1 Motivation 
 

A key challenge in the production of electricity is reducing the CO2 emissions to the 

environment. Meanwhile, the world energy consumption is increasing as a necessity of the 

industrialization process of the developing countries. This will require economic alternatives 

for electricity generation rather than using oil and natural gas. Nuclear energy is a non CO2 

emission energy source. Though, currently, a large amount of electricity in the world is 

provided by nuclear power, there are some problems with public acceptance due to safety 

concerns and economics. The next generation of nuclear power plants, which possess 

demonstrable safety and economically competitiveness, are now being developed. The 

modular high temperature gas cooled reactor system is inherently safe and has the potential 

to compete with natural gas in the electricity market. The 5th largest utility in the world 

located in South Africa, ESKOM, is now developing a commercial unit using a pebble bed 

reactor with a power of 268MWth to generate electricity [1]. MIT is also exploring the 

development an advanced modular pebble bed reactor system (MPBR) for the production of 

electricity with high efficiency and low cost. 

      The design of the power conversion system significantly affects the plant efficiency and 

the capital cost. In the Rankine cycle, using steam as working fluid, the temperature is 

limited by the high pressure imposed by the pressure-temperature relationship along the 

saturation line. Thus the maximum efficiencies of the water cooled reactor systems are no 

more than 35%. With current technology, a gas temperature as high as 950°C in the gas 

cooled reactor system is possible. The Brayton cycle, implemented in a gas turbine cycle, 

has the potential of increased efficiency, less risk of water ingress accident and a decrease in 

system complexity and O&M costs. It thus becomes an attractive choice for the power 

conversion system for the pebble bed reactor system. There are two types of cycles – direct 

and indirect, each has own advantages and disadvantages. Recuperaton and intercooling 

have been proposed to improve the thermodynamic efficiency. In consideration of gas 

properties, helium is the most suitable gas as the working fluid in the Brayton cycle at these 

temperatures. In this case, the development of the helium gas turbomachinery is vital to the 
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implementation of the gas turbine cycle. For the indirect cycle, the intermediate heat 

exchanger (IHX) is crucial. A large shell-and-tube heat exchanger will make the system 

uneconomical[2]. The same is also applied to the recuperator; a bulky and costly one will 

defeat the economic and compact advantage of the system. For a modular nuclear system, 

the components must be shipped by truck or rail. Therefore, it is essential to design a 

compact power conversion system that complies with the existing codes and can be 

fabricated with current technology or a near-term extension of the technology. 

      As an advanced reactor system, it must be capable of meeting utility requirements for 

load following and control band. Since the power conversion system differs greatly from a 

conventional steam cycle, the question of operating stability also arises naturally. Thus, an 

effective control system needs to be designed. The dynamic characteristics of the 

components of the plant and the performance of the coupled gas turbine and compressors are 

important for the control system design. In practice, the transient performance and control 

system design are inseparable. In previous analyses, the reactor core and the power 

conversion system are often treated separately, and then integrated as each other’s boundary 

condition. For example, in the analysis of the power conversion system, it is usual to assume 

a constant reactor core outlet temperature due to its large thermal inertia. This assumption is 

valid only during a relative short time period after a transient. It is essential that a dynamic 

model which integrates simultaneously the reactor core and the power conversion system be 

developed. With the dynamic model, we can investigate the interaction between the design 

and dynamic performance. Examples are the design of turbomachinery and the position of 

the bypass valve. The control scheme and the control configuration can be explored using a 

dynamic model through simulation of load ramps. Also the consequences of accidents such 

as grid separation can be found. 

      The main objective of this thesis is to provide the preliminary design for an 

economically competitive power conversion system, giving the control system design and 

simulating the load transients. The power conversion system must satisfy all codes and 

standards and does not require significant R&D effort. Key questions, such as IHX design, 

gas turbine and compressor matching as well as operating stability, need to be answered. 

This clearly suggests the need for developing an approach to optimize the plant system 

parameters and to simulate the plant. 
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1.2 Thesis contribution 
 

The establishment of an overall technical basis for the MPBR will require a sufficiently 

developed design to allow all of the key questions regarding technical feasibility and 

economic viability to be answered. Since the individual component performance will 

interact strongly with steady state and transient performance of the plant, it will be important 

that system dynamic behavior be adequately understood. In this thesis, the followings have 

been accomplished with emphasis on the power conversion system. 

(1) With the power conversion system, the design constraints are derived. A schematic 

of the power conversion system coupled with the pebble bed reactor is designed. The 

performance and costs of the components are determined.  

(2) A steady state heat balance model has been developed, programming with Visual 

Basic. The model is flexible enough to allow the exploration of plant design options. 

For example, the user can choose different intercooling stage numbers. The model 

takes as user input, the efficiency and pressure losses for each component, then it 

gives the cycle overall pressure ratio, the net output electricity, and thus the net plant 

efficiency. 

(3) Parametric calculations are conducted with the steady state model. The salient 

parameters of the plant are determined based on the requirement that the components 

could be fabricated with no significant R&D effort and at reasonable capital cost. 

(4) The specifications of the heat exchangers and turbomachinery are provided. 

Parametric calculations for a Plate Fin Heat Exchanger are conducted. 

(5) A first principle dynamic model is developed based on the actual physical 

parameters of the plant, such as the overall characteristics of the turbomachinery. 

The model is coded using a simulation language ACSL[3]. It integrates the reactor 

core and the power conversion system simultaneously. A specific control technique 

is incorporated in the dynamic model for assessing the control scheme.  

(6) A control system is designed. In the power conversion system, bypass valve control 

and inventory control are utilized. The control scheme is proposed. The control 

system of the plant provides the automatic control functions for power regulation in 
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accordance with the grid load requirement and safety protection to the plant for the 

anticipated accidents. 

(7) Load transients are simulated. And the power ramping and step change capability are 

studied.  

 

1.3 Organization of thesis 
 

This thesis is organized into seven chapters. Chapter 2 reviews the existing technologies 

related to the gas cooled reactor system, especially the pebble bed reactor system and the gas 

turbine power conversion system. The development history of the high temperature gas 

cooled reactor system is described. Also, the pebble bed reactor designed by ESKOM will 

be introduced. With the gas turbine cycle, the operating experience of the helium 

turbomachinery in Oberhausen, Germany which represents the only real experience with the 

turbomachinery to this point is reviewed. The requirement of an advanced gas cooled reactor 

design and the development path in this report are presented. 

      Chapter 3 presents the developed gas turbine power conversion system design criteria 

and the current design. The advantages and disadvantages of the direct versus indirect cycle, 

closed versus open cycle and cycle variations are discussed. The three-shaft arrangement 

and the single-shaft arrangement for the turbomachinery configuration are compared. The 

design constraints for coupling with the pebble bed reactor are derived. The fabrication 

feasibility for IHX, recuperator and some design considerations are discussed. Parametric 

calculations for the Plate Fin heat exchanger are presented. The current schematic of the 

MPBR is presented. 

      Chapter 4 presents the steady state model and the dynamic model. For the steady state 

model, the losses caused by components are discussed in detail and the calculation 

procedure is presented. The cycle efficiency losses caused by vessel cooling are analyzed. 

For the dynamic model, the numerical solution approach that gives convergent results is 

presented and the models for each component are discussed in detail. The reactor model 

consists of three components: (1) the point kinetics, (2) the two-dimensional thermal 

hydraulics and, (3) the reactivity calculation. A set of dimensioned semi-rigorous parameters 
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is introduced to characterize the multi-stage turbomachines. The PI controller algorithm is 

incorporated in the model. Some verifications are presented for each component model.  

      Chapter 5 presents the control system design. The control strategy for meeting utility 

requirements is designed. In terms of the reactor control and the power conversion system 

control, the potential control methods are discussed. The control configuration for the 

MPBR is given. 

      Chapter 6 presents the steady state parametric calculations and dynamic simulations for 

load ramps. Verifications with another code Flownet [4] for simulating a load ramp are 

given. The simulation of the load ramps is intended to demonstrate the prominent operating 

characteristics of the plant design. The aim of this chapter is to give the salient parameters of 

the MPBR and the control features. 

      Chapter 7 presents the final conclusions and discussions.  

At the end of the thesis, five appendices are added that give the IHX and recuperator design 

information and the turbomachinery design results carried out by Concepts-NREC, the IHX 

assembly designed by MIT, helium properties and nomenclature.  
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2. Background: HTGR gas turbine power plant 
 
2.1 Introduction 
 

In this chapter, the world-wide development of the high temperature gas cooled reactor 

system is described briefly. Two core types, prismatic and pebble bed, are introduced. The 

control methods applying to the reactor and the power conversion system are explained. 

After some discussion of the gas turbine cycle, the technologies and experiences of heat 

exchanger and helium gas turbomachinery are described. Finally, the requirement of the 

advanced gas cooled reactor system as a candidate “Generation IV” reactor system and the 

development path in this study are presented. 

 

2.2 High temperature gas cooled reactor 
 

2.2.1 Reactor system 
 

The first commercial gas-cooled power reactor started operating at Calder Hall in England in 

1956 and produced 40 MW of electricity. These first power reactors were graphite 

moderated with natural uranium metal fuel rods and cooled by circulating 0.8MPa CO2 at an 

outlet temperature of 335°C. These “Magnox” reactors, had a low power density – 0.1 to 0.5 

MW(e)/m3, using natural uranium as fuel and graphite as the moderator. To improve the 

thermodynamic efficiency and fuel utilization of the Magnox reactors, the Advanced Gas-

Cooled Reactors (AGRs) were developed. In AGRs, 2.5% enrichment UO2 pellets were used 

as fuel. That led to outlet temperature increases to 560°C from the 350 to 400 °C of the 

Magnox reactors. 26 Magnox reactors and 14 AGRs have been constructed in the United 

Kingdom and 8 Magnox reactors in France[1, 2]. With the experience of Magnox and AGR 

reactors, CO2 corrosion of the steel components and carbon corrosion by CO2 remain as 

areas of concern[1].  

      In parallel with the development of AGR, in the mid-50s the idea for a high temperature 

gas cooled reactor (HTGR) was proposed. HTGRs utilize ceramic coated particle fuel, in 

which the 500µm diameter fuel particles are surrounded by coatings and dispersed in a 
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graphite matrix. Helium is used as the coolant and graphite as the moderator. The 

combination of graphite core structure, ceramic fuel and inert helium permits very high 

operating temperature.  

       There are two core types for the HTGR – prismatic and pebble bed. For the prismatic 

core, the coated particles are loaded in cylindrical fuel compacts that are inserted in 

hexagonal graphite fuel elements, as shown in Figure 2.1[3]. The elements contain other 

holes for control rod insertion, flow of gas coolant and holding the burnable poison rods. 

The fuel elements are packed in the core and replaced as a batch when they are depleted. 

The prismatic type HTGRs have been constructed in United Kingdom, United States and 

more recently in Japan. The Dragon reactor in the United Kingdom was the first HTGR 

prototype, which operated first in July 1965 and was decommissioned in March 1976 after 

long full power operation [4]. The Peach Bottom Unit 1 was the first HTGR prototype in the 

United States. It achieved initial criticality in March 1966 and full power in May 1967. The 

plant went into commercial operation in June 1967 and was shut down for decommissioning 

in October 1974 [4]. This was followed by a large commercial prismatic plant, Fort St. 

Vrain in the United States. Fort St. Vrain was a steam cycle plant with a capacity of 842 

MW(t) and 330 MW(e). Initial electric power generation was achieved at Fort St. Vrain in 

December 1976. It was shut down permanently in 1990 due to its low availability primarily 

caused by problems with the water-lubricated bearing of the helium circulator [2,5]. 

Recently, the Japanese test reactor HTTR reached first criticality in 1998 and reached full 

power in 2001. It is a 30 MW(t) prismatic core HTGR design with outlet temperature 

850°C[6].  

      For the pebble bed core, the coated particles are embedded in spherical graphite fuel 

“pebbles” with a diameter of approximately 60 mm, as shown in Figure 2.2[7]. One typical 

pebble contains ten to twenty thousand coated particles. The pebbles randomly packed in the 

core cavity forms the fuel system. Fresh pebbles are added to the top of the core and the 

burned pebbles are extracted at the bottom. After measuring the burnup, the partially burned 

pebbles are recycled to the top of the core for another cycle. The coolant flows through the 

interstices presented in the bed. The control rods are inserted either directly into the core, or 

into the side reflector, depending the core size. Pebble bed reactors have been developed in 

Germany: the AVR test reactor and the THTR power plant. AVR reached criticality in  
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  Figure 2.1 Hexagonal fuel element for prismatic core [3] 

 

 
 Figure 2.2  Pebble fuel element[7] 
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August 1966 and operated until December 1988 [8]. The THTR nuclear power plant 

included a steam cycle to generate a net output of 296 MW electricity. The construction of 

THTR-300 began in 1971 and was completed in 1984. The plant was connected to the 

electrical grid of the utility in November 1985. It was shutdown permanently in 1989[8]. A 

pebble bed test reactor HTR-10 has been built in China [9, 10]. It achieved its first criticality 

in December 2000 and was connected to the electrical grid of the utility in January 2003.  

      Excellent safety characteristics can be achieved for HTGRs due to their typical features: 

the high heat capacity of the graphite core, the chemical stability and inertness of the 

coolant, the high retention capability of fission products in the fuel particles and the inherent 

negative temperature coefficient of reactivity of the core. With a deliberate decrease in the 

power level and reconfiguring of the reactor, the modular type HTGR concept was proposed 

in the early 1980s. The modular type HTGR provides the extra unique characteristic that the 

fuel temperature will not exceed the failure temperature following postulated accidents just 

by using passive heat transfer mechanisms. Currently, a joint United States – Russian 

Federation program is developing the GT-MHR project for burning weapon-grade 

plutonium [11, 12]. GT-MHR is a modular, prismatic reactor design with 

600MWt/286MWe. Another commercial modular HTGR is being developing by ESKOM in 

South Africa – PBMR [7,13]. PBMR is a modular pebble bed reactor design with 265 

MWt/116.3 MWe. Both GT-MHR and PBMR include a direct closed gas turbine cycle, 

which will be described in detail in the section 2.3. In this study, MPBR will use a pebble 

bed reactor core with thermal power of 250 MW similar to the PBMR core. 

 

2.2.2 Reactor control 
 

In the pebble bed reactor core, there are usually two reactivity control systems – the control 

rod system and the small absorber ball system, as shown in Figure 2.3 [14,15,16]. The 

control rod system consists of several control rods and the same number of drive 

mechanisms. It is usually utilized as the power regulating and control system and the first 

shutdown system as well. The control rod drive mechanism inserts the control rod into the 

side reflector and removes it out. For a large pebble bed reactor, the control rods might be 
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  Figure 2.3 Control rod arrangement in the HTR-10 [14] 

 

inserted into the reactor core. However, the disadvantages are that the rod insertion will 

interfere with the pebble fuel elements and may damage them. The small absorber ball 

system is the second shutdown system. If emergency shutdown is required and the control 

rod system cannot be assured to work, boronated (boron carbide) balls are dropped by 

gravity into side channels to shut down the system. In order to restart the system, the small 

absorber ball system provides means to remove the absorber balls from the channels and to 

put them back into the ball storage vessels.  

      In the indirect cycle design, the circulator provides the pressure head for the helium to 

overcome the pressure losses through primary system. The mass flowrate in the primary 

system is proportional to the circulator speed. If the circulator speed is adjusted, the mass 

flowrate is changed correspondingly. Therefore, the mass flowrate in the primary system can 
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be manipulated by adjusting the circulator speed. In AVR and THTR, mass flow control in 

the primary system was achieved by varying the circulator speed [1]. 

 

2.3 Power conversion system 
 

2.3.1 Gas turbine power conversion system 

 

The advantages of coupling an HTGR with a closed Brayton cycle as the power conversion 

unit (PCU) have been recognized for many years. However, the actual system can not be 

realized until key technologies have been developed. The key technologies include: 

(a) The size of gas turbines must be increased to accommodate the heat energy 

transformation proposed for a HTGR module; 

(b) The technology for an effective compact heat exchanger is available. The volume 

and capital cost must be reasonable; 

(c) The feasibility of a large magnetic bearing is possible with current technology. 

Using magnetic bearings instead of oil-lubricated bearings obviates the oil-

ingress problem which contaminates the helium coolant. 

The gas turbine HTGR plant holds the promise for electricity generation with high 

efficiency. The value can be 43% to 48%[12,13]. Rankine cycle nuclear plants, such as 

PWR and BWR, usually provide an efficiency around 33% for electricity generation. 

      Both the conceptual designs of the GT-MHR and PBMR adopt a direct closed gas 

turbine cycle for the power conversion system. The PCU of the GT-MHR utilizes a single-

shaft arrangement consisting of a turbine, an electric generator, and two gas compressors on 

a common, vertically oriented shaft supported by magnetic bearings. The PCU also includes 

a recuperator, precooler and intercooler[3,11]. In the PCU of the PBMR, there are three 

vertically oriented shafts. The high-pressure turbine drives the high-pressure compressor 

while the low-pressure turbine drives the low-pressure compressor. The power turbine 

drives the electric generator. Also, a recuperator, precooler and intercooler are used in the 

PBMR[7,13].  
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       However, implementing the gas turbine nuclear plant depends on the technical 

feasibility of helium gas turbomachines and the compact heat exchanger. The following 

describes the technologies for helium gas turbomachines and compact heat exchanger. 

 

2.3.2 Helium gas turbomachines 

 

Gas turbines have been used throughout the world for marine/aviation propulsion and power 

generation in land based power plants for many years. Large scale gas turbine output power 

can be over 200MW for a land based power plant [17]. However, its working fluid is 

combustion gases (from the mixture of air and fuel, such as natural gas or oil). Experience 

with design and operation of closed cycle helium turbomachinery has been finite but limited. 

Two large-scale helium facilities for testing closed cycle helium turbomachinery have been 

operated in Germany: (1) the 50MW(e) Oberhausen 2 helium turbine plant (EVO), and (2) 

the high temperature helium test plant (HHV). 

 

1. 50 MW(e) Oberhausen 2 helium turbine plant (EVO)[18] 

 

The design of the EVO test plant was for an electrical power of 50 MW and heating (district 

heat) power 53.5 MW. The thermal heat source for the closed helium cycle is a fossil-fired 

heater. The basic flow scheme and design parameters are shown in Figure 2.4. A two-shaft 

arrangement was selected for the turbomachinery. The high-pressure (HP) turbine drives the 

low-pressure (LP) compressor and HP compressor on the first shaft with a rotational speed 

of 5,500rpm and the LP turbine drives the generator synchronizing with the grid (rotational 

speed 3,000rpm) on a separated shaft. Both shafts are interconnected by a gear. Since the 

power generated from the HP turbine is consumed by the compressors, there is not much 

power to transfer from the HP turbine to the generator through the gear. As shown in Figure 

2.4, the HP turbine inlet temperature and pressure are 750 °C and 2.7 MPa, respectively. 

Helium mass flowrate for the cycle is 84.8kg/s.  

       The power regulation of the EVO test plant uses the same principle adopted for closed 

cycle air turbine plants. Both inventory control and bypass valve control, which will be 

described in the next section, are used.  
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      The HP turbine has 7 stages with 50% reaction. The turbine rotor disc and the blade feet 

are cooled by extracting a helium stream from the HP compressor outlet. The LP turbine has 

11 stages. One picture of the turbine is shown in Figure 2.5. The HP compressor and LP 

compressor have 15 stages and 10 stages, respectively, both with 100% reaction. Oil 

lubricated-labyrinth seals are used for sealing. The housing and nozzles are also cooled.  

      The plant was connected to the grid on November, 1975. Up to the end of 1988, the 

helium turbine plant had been operated approximately 24,000 hours. A total of 11,500 hours 

operation had been at the design temperature of 750°C. During operation many components 

and systems showed good performance. As the “first-of-a-kind” of a large helium turbine 

plant, some problems, such as vibration and low power output, arose unexpectedly for some 

components. The maximum electricity power output was 30.5MW, which is much less than 

the design nominal data of 50MWe. 
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 Inlet temperature (°C) Inlet pressure (MPa) 

1. LP compressor 25 1.05 

2. Intercooler 83 1.55 

3. HP compressor 25 1.54 

4. Recuperator, HP side 125 2.87 

5. Heater  417 2.82 

6. HP turbine 750 2.7 

7. LP turbine 580 1.65 

8.1 Precooler (heating part) 460 1.08 

8.2. Precooler (cooling part) 169 1.06 

9. Gear 

10. Regulation bypass valve 

11. Storage reservoirs  

12. Transfer reservoirs 

 

 

Figure 2.4 Oberhausen plant circuit, control and cycle parameters [18] 
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Figure 2.5 Oberhausen 2 helium turbine  

 

 

2. High temperature helium test facility (HHV) [18] 

 

The HHV facility was built at KFA, Juelich, Germany for testing of large scale helium 

turbomachinery. The flow schematic and other circuit parameters are shown in Figure 2.6. 

Helium gas with a flow rate of approximately 200 kg/s is circulated the system by means of 

electrically-driven turbomachinery. The compressor power is 90 MW, of which one part is 

provided by the turbine generation power of about 46 MW and the difference is supplied by 

a 45 MW electric motor. As result of the compressor work, the helium is heated up to 850°C 

(1000 °C for short time periods) so that a fossil-fired heater is not needed. The system 

pressure is 5.0MPa.  

      A two-stage turbine and an eight-stage compressor are on a shaft with a synchronous 

rotational speed of 3000rpm. The blade feet, rotor and housing are cooled by means of a 

cooling gas system or a sealing gas system. For the cooling gas system, radial-type 

compressors circulate the cooling helium of 56.8 kg/s at an inlet temperature of 236°C and 

inlet pressure of 4.9MPa and an outlet pressure of 5.35MPa at 258°C. The radial-type 

compressors are driven by a 6.5MW electric motor. 

      During the initial operation, oil ingress and excessive helium leakage occurred. After 

having overcome the initial problems, the HHV facility was successfully operated for about 

1100 hours, of which it operated for about 325 hours at 850°C. The measured results show 

that the compressor and turbine have a higher efficiency than the design value.  
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 Temperature (°C) 

Compressor outlet 850 

Test section inlet 850 

Turbine inlet 826 

Main cooler inlet 390 

Cooling gas compressor inlet 236 

Cooling gas for coaxial hot 

gas duct 

300 

Sealing gas outlet 50 

 

  Figure 2.6 HHV test circuit and param
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M

5 

pressor  5. Electric motor 

 Pressure (MPa) Flow rate (kg/s) 

5.12 212.0 

5.12 201.0 

4.97 209.0 

4.95 53.5 

4.90 56.8 

5.12 22.9 

52.75 2.3 

eters [18] 



2.3.3 Compact heat exchanger 

 

The heat exchangers incorporated in the power conversion system of HTGR, the recuperator 

and/or the IHX, need to have a high effectiveness, and high mechanical characteristics as 

they operate under conditions of high pressure and high temperature. Furthermore, they are 

required to be as compact as possible to limit their size to enhance the plant layout.  

      Many ways are used to classify heat exchangers. For example, the fluid types (gas-gas, 

gas-liquid, liquid-liquid), the flow arrangement (counter-flow, cross-flow), surface 

compactness, the construction type and industry are used. 

       In a heat exchanger, the heat-exchanger surface (or matrix) is the structure in which heat 

transfer takes place from one fluid to another fluid. One of the fundamental characteristics of 

a heat-exchanger surface is the surface area per unit of volume occupied by the surface. A 

“compact heat-exchanger surface” is defined as a surface configuration or matrix having a 

“large” surface area per unit of volume. Usually, any matrix with an area density greater 

than 328 m2/m3 is defined as compact matrix or compact surface [20]. A compact heat 

exchanger is constructed from compact surfaces.  

      As discussed in reference [21], a shell-and-tube type heat exchanger is too large to be 

economic without an extensive materials qualification for HTGR application. Therefore, in 

this work, the non-tubular compact heat exchanger will be considered as the base design for 

the recuperator and IHX. Many current technologies of compact heat exchangers are 

available including plate fin, spiral, microchannels, and plate.  

      Plate fin heat exchangers (PFHE) have been extensively used in applications such as 

industrial, natural gas liquefaction, air separation and hydrocarbon separation. The fins are 

brazed to the parting sheets and then the parting sheets are assembled to form a single block. 

The blocks are stacked and then the inlet and outlet headers are welded to the blocks to 

construct a heat exchanger. Numerous fin configurations such as straight fin, straight 

perforated fin and serrated fin have been developed. 

       Spiral heat exchangers (SHE) are often used in applications where a phase change 

occurs. In the SHE, the fundamental part is two metal plates welded together and rolled to 

form the flow passages.  
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       Microchannel heat exchangers are heat exchangers in which the flow channels are 

around or less than 1 mm in diameter. The small channels are manufactured on flat plates by 

means of technologies such as chemical etching, micromachining or electron discharge 

machining. A typical microchannel heat exchanger is the printed circuit heat exchanger 

developed by the Heatric company[22]. In the printed circuit heat exchanger, the plates are 

stacked and then diffusion bonded. Compared to other type heat exchangers, the 

microchannel heat exchanger is heavier if the sizes are the same. 

      Plate heat exchangers (PHE) have been widely used in the applications of chemical, 

petrochemical, district heating and power industries. A PHE is constructed by the stacking 

of corrugated plates. Different materials such as aluminum or stainless steel are used for 

different operating conditions and three technologies such as gaskets, welding and brazing 

can be used to ensure tightness. The applicable limits for different types of compact heat 

exchangers are shown in Table 2.1[23]. Note that the maximum pressure and maximum 

temperature cannot be reached simultaneously. 

      Under HTGR conditions, a high pressure difference is imposed on the recuperator 

(>4MPa) and high temperature operation (no lower than 850°C) is required for the IHX. 

Thus, only welded, brazed or diffusion bonded heat exchangers could be used, as shown in 

Table 2.2 [23]. 

 

 Table 2.1 Operating conditions for compact heat exchangers [23] 

Technology  Max. pressure 

(MPa)  

Max. temperature 

(°C) 

Fouling 

Stainless steel plate fin heat exchanger 8 650 No 

Aluminum plate fin heat exchanger 8-12 70-200 No 

Ceramic plate fin heat exchanger 0.4 1300 No 

Spiral heat exchanger 3 400 Yes 

Diffusion bonded heat exchanger 50 800-1000 No 

Brazed plate heat exchanger 3 200 No 

Welded plate heat exchanger 3-4 300-400 Yes/no 

Gasketed plate heat exchanger 2-2.5 160-200 yes 
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Table 2.2 Potentially applicable HX technology for HTGR[23] 

Technology Pressure Effectiveness Reliability 

Spiral 3 MPa Good Good 

Plate-fin 8 MPa Very good Good 

Welded plates 3-4MPa Good Good 

Diffusion bonded 50MPa Good Very good 

 

 

2.3.4 Control methods for gas turbine power conversion system 

 

The closed cycle provides unique opportunities for power regulation. The closed cycle, 

helium turbine plant can be designed using the same principles used for closed air turbine 

plants. Figure 2.7 is a schematic of a regenerated Brayton cycle. The commercial power 

plant offers the advantage of enabling the power generation to match the required load. 

Several control methods -- bypass valve control, temperature modulation and inventory 

control, might be of interest for use in the nuclear gas turbine power conversion system. 

 

1. Bypass valve control 

 

As shown in Figure 2.7, a bypass valve bleeds high-pressure gas to short-circuit the heat 

source and the turbine. This throttling process is a source of irreversibility and thus reduces 

the cycle part load efficiency. One part of the high-pressure gas, bypassing the turbine, 

results in turbine output decrease. At the same time, the cycle pressure ratio is reduced, and 

thus the mass flowrate through the compressor increases. If the rotational speed remains 

constant, the velocity triangles for the compressor and turbine are both not in the optimum 

condition, resulting in a decrease of the cycle efficiency. 

      The advantage of bypass valve control is that it can alter the turbine output rapidly to 

match the load variation. Thus, to achieve fast load change, bypass valve control is usually 

used in the closed gas turbine system, especially in a large system since the inventory 

control response is relatively slow. In the event of grid separation, the bypass valve control 

is always used to prevent the shaft from overspeeding. 
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  Figure 2.7   Bypass control of a closed Brayton cycle 

 

 

2. Temperature modulation 

 

Decreasing the turbine inlet temperature results in a decrease of the turbine output power 

and the turbine efficiency, and thus the cycle efficiency. The temperature modulation 

scheme utilizes this principle.  

      For the HTGR gas turbine plant, adjusting the reactor power can alter the core outlet 

temperature, and thus the gas turbine inlet temperature. Due to the large thermal inertia of 

the reactor core, the change of the core outlet temperature is relatively slow. Accordingly, 

temperature modulation is not suitable for fast power control. 

 

3. Inventory control 

 

As shown in Figure 2.8, the inventory of the working fluid in the closed power system is 

controlled by connecting it to a storage vessel. A compressor may be used to pump the  

working fluid from the system to the storage vessel as the load decreases. The reduced mass 

inventory in the system results in a smaller mass flow rate, and thus a lower turbine power 
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output. When the load increases, the working fluid in the storage vessel is fed back to the 

system. To minimize the heat energy moving from the system to the storage vessel, the 

working fluid can be removed from a point with the lowest temperature of the cycle. With 

the reduced mass flowrate, the temperatures and pressure ratio of the cycle remain constant, 

thus the thermodynamic cycle is unaltered. 

      When the temperatures remain constant, the sonic speed of the working gas does not 

change as the mass flowrate decreases. The blading and flow passage geometries fix the 

Mach number. This implies the flow velocities along the cycle are constant and thus the 

mass flowrate is proportional to the flow density. Also, the mass flowrate is proportional to 

the pressure level. The T-s diagrams for part and full power are shown in Figure 2.9[23].  

       As the pressure level decreases, the pressure losses will be slightly changed because the 

decrease in density also causes a decrease in the Reynolds number. The effect is that the 

cycle pressure ratio shifts from the design value and thus the cycle efficiency decreases 

slightly. 
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Figure 2.8 Closed cycle with inventory control 
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       Figure 2.10 shows the cycle efficiency under different control methods. We can see that 

the cycle efficiency at partial load remains high by using inventory control while the bypass 

valve control and temperature modulation degrade the cycle performance.  
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Figure 2.9  T-s diagram for part power and full power fo

closed Brayton cycle [24] 

 

 

 

Figure 2.10  Performance of inventory, bypass and temp
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2.4 Advanced gas cooled reactor design requirements 
 

The HTGR gas turbine plant is being developed as a generation IV nuclear energy system 

which offers advantages in the areas of economic competitiveness, safety and reliability. 

The MPBR promises a number of significant advantages over conventional commercial 

water-cooled technology. First, by fully using the high gas temperature, the MPBR provides 

a thermal efficiency approaching 45%. Higher efficiency leads to improved economics. The 

MPBR will be a demonstrably safe nuclear plant system. This implies that the system will 

be designed such that any postulate accidents will not result in fuel melt. Thus, no fuel 

damage and release of radioactivity to the environment will occur. This inherent safety is 

due to the fact that the core will be designed with a negative temperature coefficient of 

reactivity and the decay heat can be removed to the ground by a passive heat transfer 

mechanism. The passive heat transfer mechanism includes conduction and natural 

convection. Since the coolant is inert helium in the MPBR, corrosion of the components is 

not a concern so that the cost for replacement of the degraded components caused by 

corrosion such as in water-cooled reactors is avoided. This simplifies operation and 

maintenance and thus improves the economics. 

      Overall, the objective of the MPBR is that its economics can compete with natural gas. 

With regard to the balance of plant design, the requirements can be summarized as follows: 

(a) High efficiency over a broad operating range; 

(b) Load following; 

(c) Low capital cost; 

(d) Constructability; 

(e) Modularity; 

(f) Transportability; 

(g) Code compliance. 

      These goals will require that the design provides high efficiency during full power 

operation and also high efficiency during partial power operation. From a control point of 

view, the plant must be capable of meeting the utility requirement for load following as an 

advanced nuclear system. Considering the components in the power conversion system, the 

constructability,  complying with current codes and with no significant R&D effort need to 
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be considered in making design decisions. Modularity is a key consideration for component 

design so that the failed module can be unplugged and replaced quickly by a spare one. The 

component modules are manufactured off-site and transported to the construction site by flat 

bed truck or rail car. 

 

2.5 Overall development path 
 

The overall development path followed in this work was to first build a “reference” design 

which satisfies all the codes and standards. Based on the “reference” design, a steady state 

model was developed and the key limitations were identified. The steady state model was 

used to calculate the plant thermal efficiency, the pressure ratio of the power conversion 

system, and other parameters such as temperatures and pressures in the cycle. Then some 

key questions were identified. The questions include those related to the feasibility of the 

IHX and recuperator, the helium gas turbine and compressor, system control and the 

consequence of indirect cycle choice. To design the control system for the power conversion 

system, a dynamic model was then developed. The dynamic model integrates the reactor 

core and the power conversion system and incorporates the control schemes. Then a path 

was quantified to remove limitations of the “reference” design. Meanwhile, the steady state 

model and the dynamic model were used to optimize the design.  To satisfy all the 

requirements and limitations, design iterations and compromises were sometimes required. 

Finally, an advanced design was developed. 
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3. Results: Gas turbine power conversion system design 
considerations 
 

3.1 Introduction 
 

High core outlet temperature is the main advantage of the high temperature gas cooled 

reactor. To take full advantage of the high outlet temperature, a new power conversion 

system, differing from the Rankine cycle, must be used. 

      The general design considerations, such as working fluid and cycle options, and the 

design constraints will be addressed. The advantages and disadvantages for cycle variations 

will be demonstrated. The feasibility of the compact heat exchangers and helium gas 

turbomachinery will also be investigated.  

 

3.2 General design considerations 
 

Figure 3.1 is a decision tree which depicts the decision making path to narrow the choice of 

system cycle and the numerical analysis. It provides an outline of the issues which need to 

be addressed. The trade-offs are considered based on the technical characteristics and 

economics. 

      One of the main advantages for the high temperature gas cooled reactor is that it can 

provide a high core outlet temperature (> 850°C). When steam is used in a Rankine cycle, its 

temperature is limited by the high pressure imposed by the pressure-temperature relationship 

along the saturation line. One can overheat the steam but complicate the plant layout. A 

practical temperature limit is around 300-400°C for the Rankine cycle. To take advantage of 

the high core outlet temperature of the HTGR, a Brayton cycle is preferred. 

      Other design considerations involve four aspects: closed cycle versus open cycle, direct 

cycle versus indirect cycle, working fluid choice and system pressure. The following 

sections describe them. 

 

 Closed cycle vs. open cycle 

 43



       The combustion gas turbine cycle usually adopts an open cycle, in which the system 

inlet pressure is atmospheric and air is the working fluid. When utilizing nuclear energy as 

the heat source, radioactivity is one of the main considerations in power conversion system 

design. In this case, the direct and open cycle is inadvisable. By using an intermediate heat 

exchanger (IHX) to separate the nuclear system (primary system) and the “secondary” 

system, one obtains the so called indirect cycle; however, using an open cycle in the 

secondary system makes the inlet pressure in the power conversion system equal to 

atmospheric pressure, about 0.1MPa. This pressure level would lead to an IHX having a 

large volume.  An approximate estimation shows that the volume of the IHX in an open air 
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 Figure 3.1  Decision tree for specification of power conversion unit 
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cycle is a factor of 15 larger than that in a helium closed cycle and a factor of 3 larger than 

that in an air closed cycle[1]. Therefore, in terms of compactness and capital cost, a closed 

cycle is favored.  

 

 Direct cycle vs. indirect cycle 

      There are two types of closed cycles – direct cycle and indirect cycle. The direct cycle 

circulates working fluid exiting from the reactor core directly to the power conversion unit 

and the working fluid exhausting from there back to the core, while the indirect cycle 

utilizes an IHX to separate the primary system and the power conversion unit. The IHX 

transfers the thermal energy from the primary system to the working fluid of the gas 

turbomachines, which convert the thermal energy to mechanical energy. The mechanical 

energy is then transformed into electrical energy by the generator. The direct cycle has the 

advantages of higher efficiency (higher turbine inlet temperature) and less components 

(without the IHX). Its disadvantage is that the power conversion unit is contaminated, which 

results in higher cost for maintenance and higher component costs due to their adaptation to 

nuclear standards. Also, there is potential damage to the primary boundary by turbomachine 

failures, i.e., turbine blade failure. The indirect cycle has a lower efficiency compared with 

the direct cycle because the IHX results in a temperature drop from the reactor outlet to the 

turbine inlet. The elimination of contamination in the power conversion unit in the indirect 

cycle makes maintenance simple and allows components to be built to non-nuclear 

standards, thus cost less. Since there are two circuits in the indirect cycle, a depressurization 

accident occurring in one circuit imposes a high pressure differential on the IHX, and could 

cause IHX failure. These great care must be taken to include appropriate safety systems to 

prevent this from happening. Table 3.1 summarizes the pro’s and con’s for the indirect 

cycle. The indirect cycle is chosen for the MPBR. 
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 Table 3.1  Summarization of the pro’s and con’s for indirect cycle 

 Advantages Disadvantages 

1 Ease and less cost of maintenance Slightly lower cycle efficiency 

2 Avoidance of the “missile” accident One more component cost: an IHX 

3 Less expensive components for power 

conversion unit: do not need to build to 

nuclear standards 

Higher complexity: one more 

component – an IHX 

4 Less potential for water ingress accident IHX “operating curve” required 

 

 

 Working fluid choice 

      The choice of working fluid for the nuclear gas turbine cycle considerably affects the 

cycle efficiency and the system compactness. Of primary importance in selecting the 

medium for the working fluid is material compatibility, e.g., minimum corrosion and 

chemical reaction with other component materials. High thermal capacity and radiation 

stability are also important characteristics that need to be considered. 

      Helium is an inert gas. It is nuclear transparent, implying that it does not absorb 

neutrons, thereby it does not become radioactive. From experience in energy production, the 

Light Water Reactor (LWR) and fossil industries have a long history of corrosion related component 

reliability problems. Helium is chemically inert and does not inflict a chemical corrosion on 

the components, such as turbines, and thus does not lead to component degradation. 

      In Table 3.2, the properties of helium and air are compared at 1000 K and 3MPa. One 

can note that the specific heat and thermal conductivity of helium are both about five times 

that of air. Numerical comparisons have been made for helium and air in references[2, 3]. 

For similar pressure losses the flow velocity of helium can be double that of air [2, 3] and 

the heat transfer coefficient for helium is almost twice that for air [2]. This implies that, 

using helium, the heat exchanger only needs the half heat transfer area for the same 

temperature difference, or that higher effectiveness can be reached economically. 

Considering a unit mass of working fluid passing through a turbine, because the specific 

heat of helium is 5 times that of air, the helium enthalpy change is also 5 times that of air  
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        Table 3.2 Properties of helium and air at 1000 K and 3MPa 

Property Air Helium 

Molecular weight 28.9 4 

γ 1.36 1.667 

Cp (J/kg K) 1142 5193 

Thermal conductivity (W/m K) 0.068 0.36 

Kinetic viscosity (m2/sec) 3.4 28 

Sonic velocity (m/s) 628.0 1861.8 

 

when the temperature differences are the same. One might expect that the stages of a helium 

gas turbine are also 5 times that of an air gas turbine. Actually, it is not so. The sonic 

velocity in helium is much higher than that in air, there is virtually no Mach number 

limitation on flow velocity and peripheral speed in turbomachinary design when using 

helium as the working fluid. The number of stages will not increase mach for helium gas 

turbomachinary, as shown in Appendix B.  

       When using helium as working fluid, the disadvantage is that it is a lighter gas, thus is 

prone to leaks. Reliable sealing of the system at the high pressure required is the main 

consideration for large power plant. In the MPBR design, helium is both used in the primary 

system and the power conversion unit. The pressure in the power conversion unit is higher 

than the primary system pressure, thereby providing resistance for release of radioactivity to 

the power conversion unit. 

      Ordinary CO2 has been used in the primary system in Magnox Reactors (the United 

Kingdom) and Supercritical CO2 (SCO2) is being studied in another project at MIT[4] as the 

working fluid. Corrosion is the main challenge if using CO2 or SCO2 as the working fluid 

and leakage is also a concern for SCO2 since a very high system pressure is used, i.e. 

20MPa. 

 

 System pressure for closed cycle 

      The system pressure level does not affect the efficiency of a closed cycle using helium 

because the efficiency depends on cycle pressure ratio and the corresponding temperature 

ratio. However, the pressure level affects the dimensions of the components in the cycle, i.e., 
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the piping, turbomachinery and heat exchangers. Also, the choice of the piping wall 

thickness depends on the pressure (at fixed temperature) Table 3.3 shows the pipe inner 

diameter for different pressures with a fixed helium mass flowrate of 126.7kg/s, a fixed 

temperature of 30°C and an assumed flow velocity of 120m/s. Increasing the pressure allows 

a reduction in pipe diameter. On the contrary, the wall thickness needs to be increased to 

ensure the wall stress imposed by the pressure is low enough. In the MPBR design, the 

maximum pressure is taken as 8.0MPa. 

 

Table 3.3 Pipe inner diameter required for different pressures at fixed mass flowrate 

126.7kg/s, fixed temperature 30°C and fixed flow velocity 120m/s. 

Pressure (MPa) Pipe inner diameter (m) 

1.0 0.922 

2.0 0.654 

 

 

3.3 Design Constraints 
 

The design developed in this work complies with existing codes and standards in the US.  

The nuclear island of the MPBR uses a nuclear reactor design similar to that developed in 

South Africa. The pressure vessel in this design uses A508/A533 class steel as the reactor 

pressure vessel (RPV) with an upper temperature limitation of 375°C[5].  This restriction 

requires a separate cooling system for the hot section components.  The application of the 

ASME code Section III (Class I) results in a temperature limit of 427°C for the IHX 

pressure vessel and all of the Class I boundary.  To satisfy the code requirements and, at the 

same time, to allow higher turbine inlet temperatures, component cooling and/or thermal 

insulation are used where required. Component cooling, since it requires the diversion of gas 

that could be used in power conversion, will result in an efficiency penalty and is thus only 

used where necessary.  A significant advantage of the indirect cycle is the limiting of the 

Section III Class I boundary requirements to components and piping from the reactor to the 

IHX.  ASME code Section VIII requirements will be used as the basis for the components in 

the power conversion unit beyond the IHX. Section VIII allows temperatures up to 898°C.  
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In the power conversion unit, the temperatures are usually below this limitation.  However, 

due to concerns for differential thermal expansion, cooling is used for all of the turbine 

casings and interconnecting piping. 

       Current open cycle gas turbine technology allows for power levels up to 200MW and 

beyond. However, experience for design and operation of closed cycle helium 

turbomachinery is limited.  As described in Chapter 2, the largest capacity helium turbine 

built to date is the 50MWe unit in Oberhausen of Germany. After detailed discussions with 

the manufacturers for turbomachinery, it was determined that the current helium turbine 

technology will allow powers no higher than 52MW without significant extensions of 

technology with associated large R&D costs.  Notwithstanding the claims by many that 

larger turbines can be easily built, when it comes to an actual commitment by a 

manufacturer to a design with a guaranteed efficiency, the reality of the difficulty, and 

associated risk of assuming larger turbines becomes apparent. 

      With respect to piping sizes, higher velocity results in smaller piping diameters which 

will reduce costs.  Additionally, minimization of diffuser losses in the turbomachinery, also 

argues for a helium velocity as high as possible. However, when considering the potential 

erosion on piping, in the current design 120m/s was chosen as the piping helium maximum 

velocity. 

       With respect to heat exchanger design, current technology limits the maximum size for 

compact, plate fin or printed circuit designs. 

      An additional restriction was applied with respect to plant layout.  The design layout 

makes use of a horizontal configuration.  This configuration was chosen for ease of 

maintenance and bearing design.  The design calls for the use of magnetic bearings.  

However, while magnetic bearing design technology has greatly matured over the past 10 

years, the majority of magnetic bearing experience has been with horizontal configurations.  

Additionally, while magnetic bearings have been built which will support the weight of a 

single shaft design, these bearings have been limited to rotational speeds of several hundred 

RPM, not the several tens of thousand RPM anticipated for single shaft designs.  Thus, 

again, we have chosen to use technology with maximum industrial experience and minimum 

extension of technology. 
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      The last constraint concerns the use of modularity.  In our design we advocate the 

maximum use of modular designs for components.  This places constraints on the maximum 

sizes for individual components such as heat exchangers and requires the use of individual 

modules as building blocks for the IHX, recuperator, and precoolers. 

 

3.4 Configuration consideration 
 

For the gas turbine cycle, the shaft arrangement needs to be considered. In order to improve 

the cycle efficiency, some cycle variations, i.e., recuperated and/or intercooled cycles, are 

possible options.  

 

 Shaft arrangement 

      The configuration of the power conversion unit should be determined after consideration 

of both the technology of gas turbomachines and its layout. So far, there are two options for 

turbomachine configuration: (a) Single-shaft arrangement, (b) Multi-shaft arrangement.  

       A turbine which drives compressors and the generator through a single shaft, shown in 

Figure 3.2, is called a single-shaft arrangement. In this arrangement, usually one or two 

compressors might be used. If more than one compressor, they are mechanically connected. 

The electric grid synchronous frequency is 60Hz and thus the generator rotational speed 

must be 3600 rpm or a multiple of this if not using a frequency converter. To allow turbines 

and compressors to run at high rotational speed, which makes their efficiencies high and 

their dimensions small, a speed reducing gearbox or a frequency converter are required. The 

gearbox and frequency converter both cause energy loss, especially during part load 

operation, and thus result in a decrease of cycle efficiency. The maximum practical power 

output of a viable gearbox is around 80 MW. The single-shaft arrangement suits operating at 

a fixed speed and fixed load condition such as meeting the base load power requirement. In 

this case, the load-following operation capability, for example, the rapid accommodation to 

changes of load and rotational speed, and efficiency at part load, is not important. The 

advantage of the single-shaft arrangement is its reduced danger of overspeeding in the event 

of total load rejection due to the inherent high inertia caused by the drag of the compressors.  
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      To improve the gas turbine cycle efficiency, an axial compressor is preferred since it has 

higher efficiency and smaller dimensions in comparison with the centrifugal type. However, 

the axial type is more prone to instability when operating at conditions widely shifted from 

the design point. When such a compressor operates at a rotational speed much below the 

design speed, the gas density in the last few stages is much too low, the axial flow velocity 

becomes excessive, and thus forces the first stage to be operated at stall[2, 6]. The unstable 

operation, which causes violent aerodynamic vibration, is likely to occur when a gas turbine 

is started up or operated at low power.  

       A multi-shaft arrangement, typically a three-shaft arrangement shown in Figure 3.3, 

significantly improves the gas turbine stability due to expanding the compressors stable 

operating range[7]. Taking three-shaft arrangement as an example, it divides the 

compression process into two sections. These two sections are mechanically separated, 

allowing each section to run at a different speed. The compressor in each section requires its 

own driving turbine. As shown in Figure 3.3, the high-pressure turbine drives the high-

pressure compressor and the low-pressure turbine drives the low-pressure compressor. A 

mechanically independent (or free) power turbine couples to a generator. The three-shaft 

arrangement exhibits improved operational stability when the gas turbine operates at part 

load. The trade is the cost and complexity for the separate shaft system versus the single-

shaft arrangement. Although many believe that the three-shaft arrangement is more 

expensive, designers disagree with them about this issue[6]. 

      After detailed discussions with the turbomachinery manufacturers, i.e., Dresser-Rand, 

Elliott-Ebara and Siemens, it was determined that the current helium turbine technology will 

allow powers no higher than 52.0MW (70kHP) for a single body without significant 

extensions of technology with associated large R&D costs. All of the manufacturers prefer 

direct-drive rather than gearboxes at this power level due to cost and maintenance. The 

three-shaft arrangement permits the power for both the high-pressure turbine and the low-

pressure turbine to be around 50MW. For the above reasons, a three-shaft arrangement is 

adopted in the MPBR design and magnetic bearings are expected to be used.  The shafts are 

all horizontal in layout. 
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  Figure 3.3  Three-shaft arrangement 

 

 

 Recuperation  

      The Brayton cycle with low pressure ratio has a high temperature turbine exhaust flow. 

The temperature difference between the turbine exhaust and the compressor discharge is 
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large. If a recuperator is employed, the remaining energy of the turbine exhaust is 

transferred to preheat the gas at core inlet (for direct cycle) or the gas at the secondary inlet 

of the IHX (for the indirect cycle), and the cycle efficiency can be improved significantly. 

For the recuperated cycle, a recuperator with high performance is required. 

 

 Intercooling 

      To generate net power output with a closed gas turbine cycle, the power produced by the 

turbine should be larger than the power consumed by a compressor with an identical 

pressure ratio. Decreasing the inlet temperature decreases the compressor power at the same 

pressure ratio. Thus, intercooling can be used to improve the cycle efficiency. The 

compression process is implemented using several compressors, in which the inlet helium is 

cooled by a helium/water heat exchanger individually. This results in a significant reduction 

of the compressor power required to realize the compression task, and thus an increase of 

the cycle efficiency.  

      The downside of adopting intercooling is increasing the cycle complexity and the 

requirements for cooling water. 

 

3.5 Compact heat exchanger and helium gas turbomachinery design 
considerations 
 

The feasibility of high performance heat exchangers, operated at high temperature and high 

pressure, and high efficiency helium gas turbines and compressors is vital to implement the 

gas turbine cycle for the modular pebble bed reactor. Considering the size, weight, and 

layout, the modules of components should be transported to the site as a unit.  

The following describes compact heat exchanger and helium gas turbine design 

considerations. 

 

 Compact heat exchanger design considerations 

      Within the pebble bed reactor, the outlet temperature can reach 900°C, which is the 

working condition for the IHX if using an indirect cycle. For the recuperator, the hot inlet 

temperature is around 500°C and the pressure difference can be around 5.3MPa. Graphite 
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particles in the primary system can induce the risk of fouling of the primary channels of the 

IHX. Also, the helium impurity content (H2O, H2, CO,…) can lead to a risk of corrosion for 

the heat exchanger channels. With respect to the geometry, a modular concept is proposed 

for benefiting maintenance—simply removing the leaky module and plugging in a spare 

one. The heat exchanger effectiveness must be high. For the IHX, the effectiveness must be 

no lower than 90%, and for the recuperator, 95%. To limit the size, compact heat exchangers 

are the most attractive solution to the design of both the IHX and recuperator.  

      As described in Chapter 2.3.2, the criteria for the selection of compact heat exchangers 

are based on the operating conditions and other features such as weight, cost, compactness, 

reliability, corrosion and fouling. For the MPBR, two types of compact heat exchanger 

technology – Printed Circuit Heat Exchangers (PCHE) and Plate Fin Heat Exchangers 

(PFHX) are considered for the IHX and recuperator. 

      The PCHE was developed by Heatric of Dorset England, which is a division of the 

Meggitt Corporation. The printed circuit concept makes use of chemically etched flow 

channels on a plate in a predetermined flow pattern as shown in Figure 3.4. Then the plates 

are stacked together and diffusion bonded as shown in Figures 3.5, 3.6 and 3.7. There are 

over 400 units operating worldwide for a wide of range of application up to 500 bar and 

800°C. Units have been in service more than 12 years[7]. 

      Plate fin heat exchangers have been widely used as recuperators in the field of power 

generation. Ingersoll Rand Energy Systems (IRES), Portsmouth, NH has developed a plate 

fin heat exchanger that is well suited to the IHX and recuperator applications. The IRES 

PFHX is manufactured through a patented approach in which the folded fins are brazed to 

the stamped plates to form the unit-cells as shown in Figure 3.8. The unit-cells are then 

stacked to form the totally welded pressure boundary as shown in Figure 3.9. The 

configuration is specifically designed to accommodate substantial thermal strain and 

therefore to tolerate the severe temperature gradients encountered during transient 

operations. 

      Mr. Eli Demetri of Concepts-NREC has made thermal designs with PCHX and PFHX 

configurations for the IHX and recuperator. The design results are included in Appendix A. 
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  Figure 3.4 Printed circuit plate [7] 

 

 
 Figure 3.5 Stacking of printed circuit plates [7] 
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  Figure 3.6  Detail of bonded printed circuit plates [7] 

 

 
  Figure 3.7 Example of PCHX core [7] 

 

 56



 

 
 

 Figure 3.8 Unit-cell of plate fin heat exchanger [8] 

 

 
  Figure 3.9 Stacking of plate fin heat exchanger unit-cells [8] 
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      Using the semi-empirical heat exchanger model of Concepts-NREC, parametric design 

calculations were conducted with design conditions slightly differing from that in Appendix 

A. The plate and fin geometry details for the selected configuration are as follows: 

 Cold-side Fin Layers =1 

 Hot-side Fin Layers = 2 

 Plate Spacing = 1.65 mm (0.065 in) 

 Parting Plate Thickness = 0.38mm (0.015 in) 

 Fin Material Thickness = 0.076mm (0.003 in) 

 Fin Spacing = 45 fins/inch 

Incoloy 800 was selected as the reference material to construct the IHX. Since the 

recuperator operates at a much lower temperature, it can use conventional and lower cost 

material such as 347 stainless steel. The relationships of friction and heat transfer with 

Reynolds number of the plate-fin surface 11.44-3/8W in Reference[9] are used. 

      The design conditions for the IHX and for the recuperator are given in Table 3.4 and 

Table 3.5, respectively. The results of the parametric design calculations for the IHX are 

given in Table 3.6 for the PFHX configuration. For the recuperator, the results are given in 

Table 3.7. The estimated costs are scaled from Appendix A based on the weight.  

      From Table 3.6, it can be seen that, as the effectiveness increases 5 percentage points, 

the heat exchanger volume is roughly doubled, thus the cost is also roughly double. We can 

see, from Table 3.7, low pressure losses result in larger heat exchanger volume and thus 

higher cost if the effectiveness is fixed. With the same effectiveness, the recuperator 

occupies a larger volume than the IHX since the former operates at a lower pressure. 

Combined with Appendix A, it can be noted that the PCHE design is large and costly, but 

provides less development risk in the present timeframe. The IRES PFHX design is 

promising in terms of the volume and cost. 

      Currently, the upper limit temperature of the Heatric heat exchanges in service is 800°C. 

Withstanding a higher temperature up to 900°C, high-temperature alloys such as Incoloy 

800 would be required. The designers in Heatric and IRES expressed confidence that there 

are no technical barriers to use high-temperature alloys but that this would require some 

development[10]. For the depressurization accident, in which the secondary loop 

depressurizes while the primary loop remains at normal pressure, the IHX will experience a 
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pressure differential of 7.8MPa. The management of this kind of loss-of-pressure scenario 

needs further study. 

 

 

 

   Table 3.4 IHX design conditions 

 Primary (hot) side Secondary (cold) side 

Working fluid Helium Helium 

Flow rate (kg/s) 126.7 126.7 

Inlet temperature (°C) 900 488.8 

Outlet temperature (°C) 509 879.4 

Inlet Pressure (MPa) 7.73 7.99 

Requirement Effectiveness ≥ 90% 

Primary pressure loss ≤ 2% 

Secondary pressure loss ≤ 2% 

 

 

 

  Table 3.5 Recuperator design conditions 

 Hot side Cold side 

Working fluid Helium Helium 

Flow rate (kg/s) 126.7 126.7 

Inlet temperature (°C) 511 74 

Outlet temperature (°C) 96 489 

Inlet Pressure (MPa) 2.75 8.0 

Requirement Effectiveness = 95% 

Hot side pressure loss ≤ 1.8% 

Cod side pressure loss ≤ 0.8% 
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 Table 3.6 IHX parametric design calculation results for PFHX configuration  

Effectiveness 95% 92.5% 90% 

Hot side pressure loss, % 0.49 0.46 0.65 

Cold side pressure loss, % 1.41 1.39 1.40 

Number of modules 18 18 18 

Module width, W, mm 635 635 432 

Module length, L, mm 676 475 411 

Module height, H, mm 1143 1003 1125 

Total core volume, m^3 11.2 7.49 5.15 

Estimate total core weight (kg) 26,310 17,620 12,120 

Approximate HX cost, US 2001 $M 3.1 2.1 1.4 
NOTES: 
A “module” design as following: 

W

L 

H 

 

 

 

 

 

 

Table 3.7 Recuperator parametric design calculation results for PFHX configuration 

Effectiveness 95% 95% 95% 

Hot side pressure loss, % 0.80 1.38 1.77 

Cold side pressure loss, % 0.334 0.575 0.738 

Number of modules 18 18 18 

Module width, W, mm 762 762 762 

Module length, L, mm 561 660 711 

Module height, H, mm 1455 1118 991 

Total core volume, m^3 15.3 13.2 12.4 

Estimate total core weight (kg) 35,960 31,220 29,320 

Approximate HX cost, US 2001 $M 0.60 0.52 0.49 
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Table 3.8 Design details of Recuperator with effectiveness of 95%, pressure loss of 0.8% 

(hot side) ,0.334% (cold side) 

 Hot side Cold side 

Flow rate (kg/s) 126.7 126.7 

Inlet pressure (MPa) 511 74 

96 489 Inlet temperature (°C) 

2.75 8.0 Outlet temperature (°C) 

Core Height (mm) 1455 

Core Width (mm) 762 

Core Length (mm) 561 

Inlet Header Width NA 152 mm (6 in) 

Outlet Header Width NA 203 mm (8 in) 

Heat transfer area (m^2) 1749  842.5  

Plate spacing  3.3 mm (0.13 in) 1.65 mm (0.065 in) 

Fin spacing (1/in) 45 45 

Fin thickness  0.076 mm (3 x 10^-3 in) 0.076 mm (3x10^-3in) 

Free Flow/Face Area 0.825 0.825 

Surface/Volume (m^2/m^3) 4734 4685 

Hydraulic radius (m) 1.716 x10^-4 

Total heat transfer (MW) 273 

Reynolds number 296 615 

Heat transfer coefficient W/m2 K 2061.7  3200.1 

Fin efficiency 0.353 0.538 

Surface efficiency 0.424 0.64 

Side pressure loss (%) 0.80 0.334 

Inlet header pressure loss (%) NA 0.055 

Outlet header pressure loss (%) NA 0.081 

No. of Passage pairs 255 

Weight (kg) 35960 

1.743x10^-4 
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 Helium gas turbomachinery design consideration 

      High pressure (7~8 MPa) and low pressure ratio (2.5 ~3) characterize the nuclear helium 

gas turbine cycle. For helium turbomachines, the Mach number limitation is no longer the 

limitation for the design due to the high sonic speed of helium. Thus, the blade tip 

circumferential stress becomes the design limitation in the determination of the number of 

stages.  

      There are two basic types of turbine – radial flow and axial flow. The axial turbine is 

normally more efficient than the radial type.  The radial turbine has a relative higher 

efficiency only for handling low mass flow. In application, the vast majority of gas turbines 

are axial type. For the MPBR cycle, an axial turbine is suitable. In the MPBR, the highest 

turbine inlet temperature will be lower than 880°C. Using single crystal super alloys avoids 

the necessity of blade cooling. 

      Since the pressure ratio for compressors is in the low range there are two options for the 

compressor configurations – centrifugal and axial. The predominant advantage of the 

centrifugal design is the ability to operate over a wider range of mass flow than an 

equivalent axial compressor, which allows for advantages in control system design. 

However, the axial compressor has the potential for higher efficiency and smaller size.  

       The aerodynamic design for a 5 stage centrifugal compressor, an 8+1 stage axi-

centrifugal compressor and an axial turbine has been conducted by Concepts-NREC. The 

design results are included in Appendix B. 

 

3.6 Schematic of current design 
 
The goal of the design is to provide a plant with high efficiency, low investment, 

modularity, less cost for maintenance 

      As described in the previous section, given the advances of technology associated with 

heat exchanger design, the fabrication of an IHX working under severe conditions such as 

high temperatures and high pressures has become a viable alternative.  This has allowed us 

to choose an indirect cycle design. 

      Helium gas is used as the working fluid in both the primary system and the secondary 

system. The flow schematic of the current MPBR design is shown in Figure 3.10.  A three-
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shaft arrangement with three-stage intercooling is adopted in the power conversion unit.  In 

the primary system, the hot helium goes into the hot side of the IHX, and after transferring 

heat to the power conversion unit, flows to the circulator. The circulator is located in the 

primary outlet of the IHX, taking advantage of the low temperature condition. It provides 

the pressure head to overcome the pressure losses caused by the resistance through the 

primary cycle.  Thereafter, the helium goes back to the upper plenum of the reactor core to 

finish the loop.  In the secondary system, the helium leaving the cold side of the IHX is 

expanded sequentially in the high-pressure (HP), low-pressure (LP) and power turbines.  

The turbine exhaust helium enters the low pressure side of the recuperator and transfers its 

heat to the high pressure side helium.  Before the helium enters a compressor, it is cooled to 

30 °C.  The helium is compressed to 8.0MPa by four compressors and then enters the high 

pressure side of the recuperator.  After heat is recovered, the helium flows into the cold side 

of the IHX.  The helium, heated in the IHX, leaves the cold side of the IHX to start the next 

cycle once again. The helium pressure in the cold side of the IHX is 0.1MPa higher than that 

of the hot side to prevent radioactive product transfer to the power conversion unit.  In order 

to provide a stream for cooling of the reactor pressure vessel (RPV), a separate vessel 

cooling heat exchanger is used.  On the primary side, helium is bled from the outlet of the 

circulator and is cooled to a low temperature level. The cooled gas then enters the annulus 

cavity between the reactor core barrel and RPV to cool the RPV.  On the secondary side of 

the vessel cooling heat exchanger, cold helium is diverted from the outlet of the high-

pressure compressor. The precooler and intercoolers are helium/water heat exchangers. The 

cold water is provided by the cooling tower.  

 

 

3.6 Summary 
 

An indirect, recuperated and intercooled gas turbine cycle is chosen for the power 

conversion system to be coupled with the pebble bed reactor system. A three-shaft 
arrangement is selected for the shaft configuration. Two types of compact heat exchanger 

technology are provided to meet the MPBR cycle requirements. The design of helium gas 
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turbomachinery has been investigated and the aerodynamic design has been conducted by 

Concepts-NREC. The cycle schematic is provided.  

      To define the optimum cycle parameters and to investigate the stability of the cycle, 

models need to be developed. Next chapter will describe the model developed.  

 

 

 

References: 

[1] T. A. Galen, “ Comparison between air and helium for use as working fluids in the 

energy conversion cycle of the MPBR”, MIT MS thesis, May, 2000. 

[2] H. Cohen, G. F. C. Rogers, H. I. H. Saravanamuttoo, “Gas turbine theory”, third edition, 

John Wiley & Sons, 1987. 

[3] Reiner Decher, “Energy conversion systems, flow physics and engineering”, Oxford 

university press, 1994. 

[4] V. Dostal, M. Driscoll, P. Hejzlar, N.E. Todreas, “A supercritical CO2 gas turbine power 

cycle for next-generation nuclear reactors”, Proceedings of ICONE 10th international 

conference on nuclear engineering, Arlington, Virginia, April 14-18, 2002. 

[5] ESKOM, “Pre-qualification request – the pebble bed modular reactor”, 1996.  

[6] Ronald C. Pampreen, “Compressor surge and stall”, Concepts ETI, Inc, Norwich, 

Vermont, USA, 1993. 

[7] “PCHE printed circuit heat exchangers”, promotional literature from Heatric, 46 Holton 

Road, Poole, Dorset BH 16 6LT, England. 

[8] Malcolm S. Child, James B. Kesseli, “Unit construction plate fin heat exchanger”, U.S. 

Patent Number 5,983,992, Nov. 16, 1999. 

[9] W. M. Kays, A. L. London, “Compact heat exchangers”, third edition, McGraw-Hill 

book company, 1984. 

[10] Personal email communication with Mr. Eli Demetri of Concepts-NREC, Dec. 12, 

2000. 

 

 

 

 65



4. Results: Model development 
 
 
4.1 Introduction 
 

As shown in Figure 3.10, the MPBR power plant utilizes a pebble bed reactor as heat source 

and indirectly couples a Brayton cycle for electricity production. The nominal cycle 

efficiency and pressure ratio can be calculated based on the performances of the components 

in the cycle. With the balance of plant, any variation of one parameter affects the plant 

performance. For example, replacing the recuperator with an effectiveness of 95% with 

another at 90% one will change the cycle efficiency and the optimum pressure ratio. To 

define the plant nominal parameters and to conduct parametric analysis, developing a steady 

state model is required. This model must be flexible to deal with the cycle variations, such 

as intercooling stage number. 

      Because of the high heat capacity of the core, the time constant of the core is relatively 

large while the response of the turbomachines to load transients is fast. In order to 

investigate the interaction of the dynamic behavior of the reactor system and power 

conversion system, a dynamic model must to be developed for simulating the overall nuclear 

gas turbine plant, including the pebble bed reactor, IHX and power conversion system. 

Similar work has been done with other gas turbine nuclear power plant systems [1,2,3,4,5]. 

The dynamic model will be used to investigate the interaction of the components design and 

dynamics, to explore the control strategy and to determine the control structure such as the 

bypass valve position and inventory control system. Also, component design will be 

evaluated and load transient simulation will be performed. The model consists of several 

sub-models corresponding to the plant components, such as the reactor, heat exchangers, gas 

turbines, gas compressors and bypass valves. It performs the control scheme using the PI 

(proportional-plus-integral) controller algorithm. Using the dynamic model, the operability 

of the power conversion system design can be evaluated.  

     After providing the plant flow schematic and the losses of the components, the plant 

nominal parameters can be given by using the steady state model. The dynamic model gives 

the plant transient performance based on the physical parameters of the components. The 

following describes the steady state and dynamic models. 
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4.2 Steady state model development 
 
4.2.1 Component losses 
 
      A real cycle consists of a series of components and the connecting piping. The 

components include a heat source device, turbomachines and heat exchangers as well as 

valves. Energy losses occur as the working fluid passes through the components. Due to the 

component losses, the real cycle efficiency will be lower than that of an ideal cycle. For 

turbomachines, helium compression and expansion are irreversible adiabatic processes and 

thus result in an entropy increase. In the heat exchanger, the cold side outlet temperature will 

be lower than that of the hot inlet because the heat exchanger volume is limited due to 

economic and transport reasons. The working fluid through the cycle will experience 

pressure losses due to friction. In the following, the different kinds of component losses will 

be described. We will then describe the efficiency of turbomachinery, the heat exchanger 

effectiveness, pressure loss, shaft mechanical loss, motor efficiency, and the energy loss 

caused by the frequency converter and gear box. Before introducing the compressor and 

turbine efficiencies, we need to know the concept of variation of specific heat and fluid 

stagnation properties. 

 

 Variation of specific heat 
 

The properties, Cp and γ , for helium remain constant over the temperature range of interest. 

However, for other real gases such as air and CO2, Cp is a function of temperature alone 

over normal working ranges of temperature and pressure. The variations of Cp and γ have an 

effect on estimating the cycle performance and it is necessary to take into account the 

variations in values, which are caused by the change in conditions through the cycle. 

 

 Stagnation properties 
 

Since fluid velocities are very high in the turbomachinery, the kinetic energy change 

between the inlet and outlet cannot be ignored. If a gas stream of enthalpy h and velocity C 

comes to rest adiabatically and without work transfer, its enthalpy rises to h0 called the 

stagnation (or total) enthalpy. The energy equation then becomes: 
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The stagnation enthalpy includes the kinetic energy. When the fluid is a perfect gas, h = 

CpT. Thus, we define the stagnation temperature T0 by: 
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CTT
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2
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T is referred to as the static temperature, and Cp
C
2

2
is called the dynamic temperature. For 

example, if a 800°C helium stream flows in the piping with velocity of 120 m/s, the 

stagnation temperature is about 801.4°C. 

      It can be seen from the energy equation that T0 will remain constant if there is no heat or 

work transfer. For an adiabatic compression process, the work input to the compressor is 
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where subscript 1 refers to inlet and 2 refers to outlet. For any real gas, it is sufficiently 

accurate to take the mean pC  to calculate compressor input work[6]: 
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      The stagnation (or total) pressure is defined in a similar way as the stagnation 

temperature but with one more restriction: that the gas comes to rest not only adiabatically 

but also reversibly, i.e. isentropically. Thus the stagnation pressure p0 is defined as: 
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Substituting eqn. (4.2) in eqn. (4.5) and using 
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By taking the first two terms of the binomial expansion, this becomes 
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where p is referred to as the static pressure, ρ is the fluid density and C is fluid velocity. 

When the Mach number is low and compressibility effects are negligible, equation (4.6) 

approaches equation (4.7). Since the sonic velocity of helium is high, for simplicity, for 

steady state calculations, equation (4.7) is used here. 

       For showing the relation of static and stagnation properties virtually, a T-s diagram is 

shown in Figure 4.2 to depict a compression process from static states 1 to 2. If an isentropic 

compression process takes place to reach the same actual outlet stagnation pressure, the 

ideal state would be 2′. 
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 Figure 4.1 Stagnation and static states in compression process 
 
 

 Compressor and turbine efficiencies 

 
The efficiencies of turbomachines usually compare the actual work with ideal work transfer. 

For turbomachines, the process is essentially adiabatic, thus the ideal process is isentropic, 

and the efficiency is the isentropic efficiency. For the compressor, the process is shown in 

Figure 4.1: 
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For the turbine, it is the inverse ratio 
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where subscript 1 and 2 refer to the component inlet and outlet, respectively. From (4.8), we 

can change it to: 
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For an isentropic process with a perfect gas, the relation of temperature T and pressure p is: 
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where γ=Cp/Cv; and with equation (4.5), for the compressor, we can derive: 
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By a similar method, for the turbine: 
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      However, there is a disadvantage with using isentropic efficiency in the analysis of a 

Brayton power cycle or in quality comparisons of turbomachinary aerodynamic design: the 

isentropic efficiency is a function of pressure ratio. The following example illustrates this 

point.  

     Suppose that there are two identical compressors with the same isentropic efficiency and  

same enthalpy rise, and we put them together as a new compressor to obtain higher pressure 

ratio (Figure 4.2)[7]. Consider the enthalpy rise: the actual enthalpy rise of the new 

compressor is the sum of that of the individual ones; but the isentropic enthalpy rise of the 

new compressor will be less than the sum of that of individual ones. 

      For each original compressor 
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  Figure 4.2 Isentropic efficiency of a combined compressor [7] 
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But, because the vertical distance between two constant pressure lines in the h-s diagram 

increases when the entropy increases, thus 
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For the new compressor 
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That means the isentropic efficiency of the new compressor is less than that of the old 

compressors. In other hands, the aerodynamic performance of the new compressor appears 

to be poorer than that of the original units.  

      This leads to the concept of polytropic efficiency, ηp, which is defined as the isentropic 

efficiency of a process as the pressure ratio approaches unity. According to the definition, 

the polytropic efficiency can be derived from the isentropic efficiency. For a detailed 

derivation, see reference [7]. 

      With perfect gas, for the compressor: 
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and for the turbine 
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again, subscripts 1 and 2 refer to inlet and outlet of the component, T0  and p0 are the 

stagnation temperature and pressure, respectively, R is the gas constant, Cp is specific heat. 

      In the cycle design process, the optimum cycle pressure ratio would vary if the cycle 

configuration is changed or component performance varies. Thus we adopt polytropic 

efficiency for turbomachines in the steady state heat balance model.  

 

 Heat exchanger effectiveness 

 
Heat exchanger effectiveness is usually used to describe heat exchanger performance. It is 

defined by the ratio of the actual to the maximum possible rate of heat transfer. 
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where (  is defined as the smaller of ( and , the subscripts h and c 

refer to the hot and cold fluids, respectively. m  is the fluid mass flowrate and Cp is the 

specific heat. As the effectiveness of a heat exchanger is specified, knowing the mass 

flowrate in each side, the hot side inlet temperature and the cold side inlet temperature can 

determine the other two temperatures: hot side outlet, cold side outlet. In general, the higher 

effectiveness the larger the volume is for the same configuration.  

min)Cpm hCpm ) cCpm )(

 

 Pressure loss  

 
Working fluid friction and flow cross-section area changes result in pressure losses in the 

heat exchangers, reactor core, inlet and outlet of each component, and piping connecting 

components. In the overall cycle performance evaluation, losses in piping are usually 
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included in the associated component losses. The pressure loss is expressed as a percentage 

pressure loss: 

  %100×
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where pin and pout are inlet and outlet pressure for a component, respectively. The pressure 

losses of heat exchangers are obtained based on design results. The pressure loss through the 

pebble bed reactor core can be calculated using the following empirical relation provided 

from KFA based on the operational experience in the AVR and THTR: 
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ρ is the density of helium (kg/m3), Re is Reynolds number, ε is pebble bed void fraction, H 

is core height (m), dp is pebble diameter (m), A is cross-section area of the core (m2), is 

the helium mass flowrate (kg/s), and µ is helium dynamic viscosity (kg/m s). 

m

This equation applies to the following range: 
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For the MPBR, in the current stage we use the PBMR core geometry; it yields a core 

pressure loss of ∆P = 76 kPa using the parameters listed in Table 4.1. The percentage of core 

pressure loss is about 1%. 

 

Table 4.1 MPBR reactor core pressure loss calculation 

H=9.04 m A=9.62 m2 dp=0.06 m ε=0.39 

Tcore,in=520 °C Tcore,out=900 °C pcore,in=7.89 MPa m =126.7 kg/s 

ρ=3.83 kg/m3 µ=4.496x10-5 kg/m s Re=1.757 x 104 ∆p = 76 kPa 
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 Mechanical loss 

 
For all our cycle designs, the compressors are driven directly by the turbine without any 

intermediate gearing. Therefore, the loss that occurs is due to only the bearing friction and 

windage. This value is very small and usually assumed 1% of the turbine power [6]. If we 

denote the transmitted efficiency as ηm, the turbine power needed for driving the 

compressor: 

  c
m

t W
η
1

=W         (4.17) 

where Wt is the turbine power and Wc is the power consumed by the compressor. 

 

 Motor efficiency 

 
In indirect cycle design, an AC motor drives the circulator in the primary system. Energy 

loss in the motor occurs when electrical energy is transferred into mechanical energy. This 

efficiency is referred to as motor efficiency, for which 98% is adopted here. 

 

 Frequency converter, gear box 

 

If a single-shaft arrangement is adopted in the PCU, the generator and all the turbomachines 

are mounted on a single shaft. Within the stress limitation, increasing the rotational speed of 

turbines and compressors results in an increase in their efficiency and reduction in their 

dimensions. This requires the introduction of a frequency converter between the generator 

and the grid or a speed reducing gearbox between the power turbine and the generator in a 

single-shaft arrangement. It enables the selection of the optimum rotational speed for 

turbomachines, independent of the synchronized frequency of the grid. However, the 

maximum practical power output for which a gearbox is used is around 80MW[8]. A typical 

gearbox has a design point efficiency of 97.5%~99%[8]. Similar to the gearbox, a frequency 

converter also causes energy losses; in the MPBR power range, it will reduce the efficiency 

of the generator by around 2% [9]. 
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 Other losses 

 
In practice, a quantity of compressed gas is always bled off for cooling turbine discs and 

blade roots. The amount of bleed gas is about 1~2 per cent of the total mass flowrate[6]. 

And since the turbine inlet temperature is high, it is necessary to cool the turbine casing in 

order to reduce its thickness. Also, because the IHX pressure vessel is an ASME Section III 

boundary, it requires cooling to make the temperature of the pressure boundary lower than 

427°C. Since the helium molecular weight is lower compared with other gases, it is prone to 

leak, therefore, leakage will be an issue in compressors. The cooling stream and leakage gas 

consume extra work and thus reduce the cycle efficiency.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 75



4.2.2 Steady state cycle calculation procedure 

 

Before assessing the effect of the component loss on the cycle general performance, we 

outline the method of calculating the cycle net efficiency in any particular case for specified 

values of the design parameters. These parameters include the core inlet/outlet temperatures, 

reactor thermal power, the polytropic efficiencies of turbomachines, heat exchanger 

effectiveness, and pressure losses. 

       In the calculation, we assume each compressor has same pressure ratio. Determination 

of the cycle efficiency for an indirect cycle proceeds the following known parameters: The 

cycle maximum pressure, i.e. high-pressure compressor outlet pressure; precooler and 

intercooler gas side outlet temperatures; the pressure drop between the IHX cold side outlet 

and the hot side inlet. The procedure for calculation is as follows: 

(1) Assume an overall pressure ratio of the secondary cycle (PCU); 

(2) From the reactor thermal power and reactor inlet/outlet temperatures, determine 

the primary cycle mass flowrate;  

(3) From the HP compressor outlet pressure and pressure losses, get the IHX cold 

side outlet pressure; 

(4) From the IHX cold side outlet pressure and the IHX pressure drop, obtain the 

IHX hot side inlet pressure, and then, get the IHX hot side outside pressure and 

circulator inlet pressure; 

(5) From the IHX hot side inlet pressure, obtain the core inlet pressure and circulator 

outlet pressure.  

(6) For the circulator, knowing the outlet temperature, outlet pressure, inlet pressure 

and mass flowrate, calculate the inlet temperature by equation (4.10), and then 

the input work. If Cp varies with temperature, a method of successive 

approximation is required. First, guess a value of Cp, calculate the inlet 

temperature, take the more accurate mean value of Cp and re-calculate the inlet 

temperature; 

(7) From the IHX hot inlet temperature and outlet temperature, using the definition 

of heat exchanger effectiveness, get the IHX cold side inlet temperature TIHX,c,in 

and outlet temperature; 
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(8) Set the gas mass flowrate of the secondary cycle (PCU) the same as that of the 

primary cycle; 

(9) From the overall pressure ratio and HP compressor outlet pressure, obtain the LP 

compressor inlet pressure and pressure ratio. The pressure ratio for each 

compressor is obtained by                    

4/1
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where PR is the total pressure ratio, PDIC#1, PDIC#2, PDIC#3 are the intercoolers’ 

percentage pressure losses; 

(10) Knowing the LP compressor inlet pressure, inlet temperature and pressure 

ratio, obtain the outlet temperature by using equation (4.12) and input work; 

(11) Use the same method to get the other compressors’ outlet temperature and 

input work; 

(12) HP turbine output work is equal to the sum of work of the MP compressor #2 

and HP compressor and mechanical losses. For the HP turbine, knowing output 

work, inlet temperature and mass flowrate, calculate the outlet temperature. 

Then, from the temperature ratio and inlet pressure, obtain the outlet pressure by 

using equation (4.13); 

(13) Same method for the LP turbine; 

(14) From LP compressor inlet pressure, precooler and recuperator hot side 

pressure losses, get the power turbine outlet pressure; 

(15) For the power turbine, knowing inlet pressure, outlet pressure and inlet 

temperature, calculate the outlet pressure, temperature and output work; 

(16) For the recuperator, from the hot side inlet temperature, and cold side inlet 

temperature, calculate the cold side outlet temperature TRcp,c,o; 

(17) If the recuperator cold side outlet temperature differs from the IHX cold side 

inlet temperature, go back to step (1) to assume a new overall pressure ratio. 

      For finding quickly the proposed overall pressure ratio, the following numerical method 

is used: Take a pressure ratio obviously much less than the proposed overall pressure ratio as 

PR1, and take another pressure ratio obviously much larger than the proposed overall 

pressure ratio as PR2, i.e. for helium cycle, 1.001 and 25.0 for PR1 and PR2, respectively. 
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Then use the mean pressure ratio PR to calculate TRcp,c,o. If TIHX,c,in is less than TRcp,c.o, set PR 

as PR1, otherwise, set PR as PR2. After that, re-calculate the mean pressure ratio PR to get a 

new TRcp,c,o. The iteration continues until it satisfies the converge criterion: 

  6

,,

,,,, 101 −×<
−

incIHX

ocRcpincIHX

T

TT
     (4.19) 

       The flowchart of the calculation is shown in Figure 4.3. The plant net efficiency is 

defined as the percentage of the electrical power output from the plant to the reactor thermal 

power: 

    %100×=
Q

Pnet
netη      (4.20) 

where Pnet is the electrical power output from the plant to the customer and Q is the reactor 

thermal power. 

       In the cycle parametric analysis, for reasons of simplification, here define a cycle 

efficiency as follows: 

  %100
/

×
−−⋅⋅

=
Q

WWW slmotorcirgenmpt
cycle

ηηη
η   (4.21) 

where Wpt is the power turbine output work, Wcir is the circulator input work, Wsl is station 

load, Q is the reactor thermal power, ηm is the mechanical transmitted efficiency, ηgen is the 

generator efficiency and ηmotor is the efficiency of the motor for driving the circulator. The 

system radiation loss, switch-yard loss, working fluid leakage losses and component cooling 

losses are not taken into account in the above definition. 
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Input: Thermal power, core inlet/outlet T, HP compressor outlet p, 
Pressure differential of IHX primary side and secondary side, HXs 

effectiveness, components pressure losses, turbo machines 
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   Figure 4.3  Flowchart of the steady state calculation 
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4.2.3 Estimation of cooling mass flowrate for reactor pressure vessel and IHX vessel 
 

In the MPBR, the material for the reactor pressure vessel (RPV) was chosen as A508/A533. 

The upper temperature limitation of this material is 375°C. During normal operation, the 

RPV temperature is required to be 280°C. The average temperature of the core barrel is 

estimated to be 390°C by PBR_SIM(Pebble Bed Reactor_ SIMulation )[10]. To satisfy the 

RPV temperature limitation, a cooling helium stream is provided in the cavity between the 

core barrel and the reactor vessel, as shown in Figure 3.10. Figure 4.4 shows the diagram of 

the cavity between the core barrel and the RPV. In this section we estimate the mass 

flowrate of the cooling helium stream. 

       As we know the core barrel temperature Tcb, the RPV temperature TRPV, the core barrel 

radius Rcb, the RPV radius RRPV, and the height H, the heat transferred from the core barrel 

to the RPV through conduction and radiation can be estimated [11]: 
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    (4.22) 

where hgap is the heat transfer coefficient for the cavity between the core barrel and the 

pressure vessel; Tcb is the core barrel temperature; TRPV is the pressure vessel temperature;  
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 Figure 4.4 Reactor pressure vessel cooling 
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kHe is the thermal conductivity of helium; δ is the cavity width; σ is the Stefan-Boltzman 

constant; εcb, εRPV are the surface emissivities of the core barrel and pressure vessel, 

respectively. The heat transferred from the core barrel to the pressure vessel by conduction 

and radiation can be estimated: 

  )(2 RPVcbgapcbRPVcb TThHRQ −⋅⋅⋅=− π      (4.23) 

where H is the pressure vessel height. 

       The heat removed by the cooling stream in the cavity from the core barrel and the 

pressure vessel can also be estimated. With regard to the gas flow in the cavity, it is 

considered as laminar when the Reynolds number Re < 2300 and turbulent when Re >104. In 

the range of 2300 < Re < 104, the flow region is the transition flow. Approximate 

correlations for calculating the friction factor and heat transfer coefficient are used [12]: 

   m
BAf /1Re

+=       (4.24) 

For Re<2100, A=0, B=16, and m=1; for 2100<Re<4000, A=0.0054, B=2.3x10-8, and m=-

2/3; for Re>4000, A=1.28 x10-3, B=0.1143, and m=3.2154. 

       In the range of 2100 < Re <106, and 0 <Pr < ∞, the heat transfer coefficient can be 

estimated[12]:  
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   for the uniform wall temperature boundary condition 675.3=lNu

  6/55/4

2/1
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)Pr1(
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   for the uniform wall temperature boundary condition 8.40 =Nu

where Pr is the Prandtl number.  

      The Dittus-Boelter equation is the most universally used correlation for turbulent flow as 

the fluid is heated [11]: 

         (4.26) 4.08.0 PrRe023.0=Nu

for 0.7 < Pr < 100, Re > 10,000, and L/D >60; L is heated length and D is hydraulic 

diameter. 

      The relationship between the Nusselt number and the heat transfer coefficient is: 
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H

He
D

Nukh ⋅
=         (4.27) 

where h is heat transfer coefficient; kHe is the helium conductivity, DH is the heated 

diameter. After obtaining the heat transfer coefficient, the heat removed from the pressure 

vessel and core barrel by the cooling stream can be calculated with a similar method to 

equation (4.23). 

       Considering the heat balance about the pressure vessel: 

  radcRPVRPVcb QQQ +=− ,       (4.28) 

where QRPV,C is the total heat removed from the pressure vessel by the cooling helium; Qrad 

is the radiation heat loss from the pressure vessel to the environment, which is about 0.5MW 

[10].  

      With respect to the cooling helium, the heat balance is: 

         (4.29) ccbcRPVHe QQQ ,, +=

Where Qcb,c is the heat removed from the core barrel; QHe is the total heat extracted by the 

cooling helium: 

  )( ,, ingoutgHeHe TTCpmQ −=       (4.30) 

where is the cooling helium mass flowrate, THem g,in and Tg, out are the inlet and outlet 

temperature, respectively, and Cp is the helium specific heat. 

      In this estimation, the radius of the pressure vessel is taken as 4.41m; the core barrel 

radius is 4.31m; the surface emissivities of the core barrel and pressure vessel are both taken 

as 0.6. The pressure vessel height is 10m. With the assumption that the core barrel 

temperature is 390°C, Figure 4.5 shows the amount of the cooling helium required to ensure 

that the RPV temperature is no more than 280°C. We can see that the higher the cooling 

helium inlet temperature, the more helium coolant is required. Figure 4.6 shows that the 

variation of the core barrel temperature affects the heat transferred from the core barrel to 

the RPV by conduction and radiation and the required mass flowrate of the cooling helium. 

      As the core barrel temperature is 390°C, about 1.3kg/s cooling helium is required for 

cooling the RPV to maintain its temperature no more than 280°C. 

      The IHX consists of 18 identical modules: each of 6 IHX vessels to encapsulate 3 IHX 

modules as shown in Appendix C. The IHX vessel is  approximately 6 m 
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Figure 4.5 Cooling helium mass flowrate as a function of its inlet temperature at the 

condition that the core barrel and RPV temperatures are 390°C and 280°C, respectively 
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Figure 4.6 Core barrel temperature effects on the cooling helium mass flowrate and the heat 

transferred from core barrel to RPV for the condition of fixing the RPV temperature at 

280°C, and cooling helium temperature at 135°C 

 

 83



height and 2.3m diameter. As described in Chapter 3, the IHX vessel is the ASME code 

section III boundary: the material temperature limitation is 427°C. In the current IHX 

module design, the hot outlet helium is ducted to the chamber formed by the inner shell and 

the outer configuration of 3 modules. The inner shell temperature is the same as the IHX hot 

outlet temperature, 510°C. Around the inner shell, a layer of insulation is used to decrease 

the temperature to 150°C. The outer vessel is the pressure boundary whose temperature 

remains 150°C. Within the annulus between the insulation layer and the pressure boundary, 

there is helium gas. Figure 4.7 shows the insulation approach. In the normal condition, the 

helium gas is stagnant. If the insulation layer breaks and causes a temperature increase with 

the pressure boundary, cold helium is bled from the HP compressor to cool the pressure 

boundary.  

       The heat that radiates to the environment from the IHX outer vessel can be estimated: 
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A is the outer vessel area; ε is the outer vessel emissivity; C0 is a constant, 5.67 J/(m2 s K4); 

T1 is the outer vessel temperature; and T2 is the environment temperature.  

       We take the outer vessel diameter as 2.5m, the outer vessel emissivity as 0.6, the 

environment temperature as 20°C, and ignore the top and bottom cover. The radiation heat 

loss is about 3.95 x 104 W for each IHX vessel.  

      The insulation thickness can be estimated using the following equation[11]: 

  
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qT ln

2
1
π

T       (4.32) 

Tis is the inner shell temperature; Tins is the outer side temperature of the insulation layer; q′ 

is linear power, k is the insulation conductivity; Rins is the insulation layer radius and Ris is 

the inner shell radius. Taking the insulation conductivity as 0.2 W/(m °C), the insulation 

thickness is about 90 mm to ensure a temperature decrease from 510°C to 150 °C.  
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    Figure 4.7  IHX vessel insulation 
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4.3 Dynamic model development 

 

4.3.1 Solution approach 

 

For the reactor core and heat exchangers, their mathematical models are formed by a set of 

ordinary differential equations individually, while the performance of turbomachinery is 

represented by their characteristic maps. Obtaining the plant response to a transient requires 

that we simultaneously solve the ordinary differential equations of all the components and 

the characteristics of the turbomachines. For a closed cycle, the working fluid is re-circuited 

through the cycle. This configuration leads to a unique constraint for solving the ordinary 

differential equations and using the characteristics of the turbomachines – the calculate start 

and end points are physically the same point.  As a result, the parameters, such as 

temperature, mass flowrate and pressure, of the start point should be equal to that of the end 

point within allowable error tolerance at a given time, as shown in Figure 4.8. 

        For calculation, we assume the parameters of arbitrary point #1 (denoted as 1) in the 

closed cycle, at time t, are as follows: temperature T , pressure  and mass flowrate . 

From point 1, we then calculate the other points in sequence such as 2, 3, etc. When 

finishing the circuit, the end point (denoted as 1′) and the start point 1 are physically the 

same point.  
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   Figure 4.8 Calculation diagram for a closed cycle 
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      The calculation convergence criteria are described as follows: 
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where ε is the allowable relative error. In the calculation for each time step, an iteration 

process is required. Taking pressure as an example, with a guessed p1, we calculate 1p′ and 

its error through the circuit. Then, we guess a new value for p1. The iteration process 

continues until the convergence criterion is met. As the convergence criteria are satisfied, 

the calculations for next time step t+∆t are performed. 

      After assessing the three parameters, pressure was found to be the most sensitive 

parameter for the power conversion system. Therefore, in this study, only a pressure 

iteration is performed. This results in some accuracy loss but simplifies iteration complexity.  

      The model is programmed by using the Advanced Continuous Simulation 

Language(ACSL)[13]. The pressure iteration is implemented by using an internal operator 

IMPLC, which is specifically designed for dealing with the algebraic loop. The solution 

process turns out to be solving differential algebraic equations(DAEs). The DAEs can be 

written as follows: 

  
),(0
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=

=         (4.34) 

Here Y’s are the state variables and Z’s are the algebraic variables. Since the residual 

relations for Z must be able to be solved, thus the partial of G with respect to Z must be non-

singular; i.e., 

  0),(
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∂
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Z
ZYG         (4.35) 

The method for solving (4.34) can be found in reference[14]. 
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      For the power conversion cycle, the algebraic constraint is 

          (4.36) 110 pp ′−=

 

4.3.2 Sub-models of components 

 

4.3.2.1 Reactor model 

 

As the dynamic model simulates the interaction of the primary system and power conversion 

system, the reactor modeling can be simplified in comparison with the stand-alone reactor 

model involving a detailed core geometry analysis. The reactor model needs to deal with the 

core neutronics and heat transfer occurring within the reactor. Core neutronics takes into 

account the gross fission power variation due to the reactivity change. The reactor reactivity 

change comes from the following sources: control rod movement, fuel temperature change 

and fission product poisoning as well as the external reactivity disturbances. The heat 

transfer in the core is implemented by heat convection, conduction and radiation. In the 

dynamic model, the reactor model consists of a point kinetics model, a reactivity model and 

a two-dimensional thermal hydraulic model. 

 

• Integration of the core model 

 

The calculation of internal heat generation within the reactor core is based on the point 

kinetics equations. The point kinetics model treats the core as a single point where the shape 

of neutron flux is time-independent. For simulation of the overall power plant, the point 

kinetics model is quite sufficient, and it is widely used in power plant simulators[1,2,3,5]. 

The thermal-hydraulic model accounts for calculating heat transfer within the pebble bed 

and reflector based on the total fission power and the power distribution; it gives the 

temperatures of fuel, reflector and coolant. Thus the temperature distribution in the core is 

obtained. Then, the reactivity caused by the fuel temperature change can be calculated. And 

the fission product poisoning can be obtained based on the fission power level. The 

reactivity is then fed back to the point kinetics model. The relationship of these models is 

schematically shown in Figure 4.9.The shape of the power distribution within the core, 
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which is obtained from the stand-alone three-dimensional calculation, is assumed to remain 

fixed at any power condition; this assumption is also consistent with using the point kinetics 

equations. 

 

• Thermal hydraulic model 

 

In the primary system, after being cooled in the IHX, the helium is ducted back to the lower 

part of the reactor. Then it goes up through the channels in the side reflector and mixes in 

the top plenum. Thereafter, it passes through the pebble bed and is heated there. The hot 

helium then mixes in the bottom plenum and flows into the hot side of the IHX. In the IHX, 

the heat is transferred to the power conversion system. 

      The heat transfer from pebbles to the fluid takes place by forced convection. Heat 

transfer among pebbles is conducted by heat conduction and radiation. Heat conduction 

occurs inside the reflector and between the pebbles and reflector. In the radial direction, the 

heat is transferred 
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Figure 4.9  Interaction between the sub-models of the reactor model 
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from the core to the reactor vessel by means of conduction and radiation within the pebbles, 

conduction of the reflector and radiation through the helium channels. Also, heat convection 

occurs between the helium gas and the reflector when the helium goes up through the 

channels in the side reflector. The thermal energy in the outer surface of the core vessel is 

transmitted to the concrete containment by means of radiation through air and air natural 

convection. 

      During full power plant operation, heat loss from the reactor vessel is relatively small 

compared with the full thermal power. In the dynamic model, the simulation is for the 

overall power plant behavior. To simplify the calculation, the heat loss from the reactor 

vessel is assumed to be negligible, and the core barrel, helium channel and reactor vessel are 

excluded. This is quite sufficient for simulating the overall power plant. Currently, the 

MPBR adopts the ESKOM PBMR design. The core region consists of two regions: a passive 

region and an active region. The passive region contains the passive (pure) graphite pebble 

balls while the outer active core region is filled with fuel pebble balls. The outer diameters 

of the passive region and the active region are 1.75m and 3.5m, respectively. The height of 

the active core is 8.5m. The thickness is assumed to be 1.15m for all reflectors. In order to 

model the heat transfer phenomena above mentioned, the two-dimensional thermal hydraulic 

model nodal scheme shown in Figure 4.10 is used. In the axial direction, there are 12 axial 

layers: 10 core nodes, 1 top reflector and 1 bottom reflector. In the radial direction, there are 

8 radial divisions: 1 inner graphite pebble, 5 fuel pebble divisions and 2 side reflector nodes. 

The temperature is uniform within a node in the numerical treatment. The coolant is 

assumed to be well-distributed in the pebble bed region and fluid flow in the radial direction 

is assumed negligible. The coolant mass flowrate fractions of the nodes in the radial 

direction of the pebble bed region, from inner to outer, are 0.22, 0.156, 0.156, 0.156, 0.156, 

0.156, respectively. 
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                Figure 4.10   Core nodal scheme 
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      The following energy conservation equation written in cylindrical coordinates is used to 

determine the temperature distribution as follows: 
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where T is temperature (K), ρ density(kg/m3), CP specific heat(J/kg. K), k thermal 

conductivity(W/m. K), qf fission power density(W/m3),qC convective heat transfer 

density(W/m3), and qR radiation heat transfer density(W/m3). 

      It is assumed that all the solid materials in one node have a uniform temperature and 

fission energy generation density. Equation (4.37) can be expressed in discrete form with the 

aid of Figure 4.11, which shows an enlarged node on the jth radial division and the axial ith 

division. For node (i, j), the finite difference equation can be derived by first principles and 

integrated along the radial direction from Rj-1 to Rj+1 as follows: 
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Figure 4.11    Nodes for core heat transport in cylindrical coordinates 
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      is the total heat transfer from the node (i,j) to its adjacent nodes: ∑ ijnodeQ ,
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where Ti,j is temperature in node (i, j), L node axial height, Qfission,ij total fission heat of 

current node (i,j), QR,ij total radiation heat of the node (i, j), Qc,ij total convective heat 

transfer of the node (i, j), 1, −jijk  average conductivity to account for heat transfer between 

node (i, j) and node (i, j-1), 1, −iijk  average conductivity to account for heat transfer between 

node (i, j) and node (i-1, j). 

      Several constitutive relations and material properties must be provided to support the 

application of equation (4.37), i.e. the heat convection correlation between helium and 

pebbles, the effective pebble bed thermal conductivity and the thermal conductivity of 

graphite. The relations and properties used in the dynamic model are described in later 

sections. 

 

• Correlation for heat convection 

 

In the pebble bed reactor, helium gas is used as coolant to remove heat from the core. As 

mentioned in the above, the helium flow in the radial direction is ignored. Thus, helium 

passes axially through the nodes of the pebble bed region. In the numerical treatment, it can 

be 1-dimensional, along the z-axis. In equation (4.38), QC,ij is used to account for the heat 

convection between helium and pebbles in a node. In numerical simulation, the node 

temperature represents the average pebble temperature. Therefore, the QC,ij for the node (i,j) 

can be determined by 

 ),,(, ingToutgTpgCgmijcQ −=      (4.39) 

where m is the helium mass flowrate in a node, Tg g,out the helium outlet temperature and 

Tg,in the helium inlet temperature in the node (i,j) and Cpg the helium specific heat. 

      In a node, at the condition that fuel temperature distribution and helium inlet temperature 

are known, the helium outlet temperature can be derived from Figure 4.12 as follows: 
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 Figure 4.12   Schematic of helium and fuel heat transfer in a node 

 

 

      In an infinitely small axial length of a node, the heat equilibrium yields 
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Being arranged, equation (4.40) becomes 
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Then it becomes 
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Integrating equation (4.42) over the whole axial length of the node produces 
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where m is helium mass flowrate (kg/s) in a node, Cg pg helium heat specific (J/kg K), Tf fuel 

average temperature in a node(K), Tg,in helium inlet temperature in a node(K), Tg,out helium 

outlet temperature in a node (K), Lθ heat transfer circumferential length(m), L axial length 
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of a node(m), Ac the total heat transfer area of a node(m2), and h the convective heat transfer 

coefficient developed by KFA based on experimental data from several independent studies 

of heat convection in pebble beds [15]: 

Nu
d
kh
p

=         (4.44) 

where k is helium thermal conductivity(W/m K), and dp fuel pebble diameter(m). 

Here, Nu is determined by 
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where the Reynolds Number, Re, is calculated by 

  
µc

p
A

dm
=Re         (4.46) 

and dp is pebble diameter(m),  mass flow rate(kg/s), Am c empty-core cross-sectional area, 

(m2), µ helium viscosity(N-s/m2), Pr the helium Prandtl number, and ε the void fraction of 

the pebble bed. 

    The application range of the above convective heat transfer coefficient is 

 100 < Re < 105, 

 0.36 < ε < 0.42, 

 D/dp > 20 (D is core diameter), 

 H > 4dp (H is mean core height). 

     All the above conditions are satisfied for the MPBR core. 

 

• Physical model and properties 

 

As the above equations show, we must know the pebble bed effective thermal conductivity 

and other material properties to calculate the heat transfer of the reactor core. 
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Pebble bed effective thermal conductivity 

 

The heat transfer within the pebbles in the pebble bed involves both heat conduction through 

pebbles and heat radiation through the voids between pebbles. The helium conduction in the 

voids between pebbles is negligible, and the heat convection between helium and pebbles is 

modeled separately. Zehner and Schlunder used a cell model to determine the effective 

thermal conductivity taking into account heat conduction and radiation. Breitbach and 

Barthels developed a modified Zehner-Schlunder model which had been validated with 

experimental date[16]. Their relation of effective thermal conductivity depends on the 

temperature and neutron fluence. 

     General Electric developed a correlation for the pebble bed thermal conductivity which 

depends only on the temperature[17]: 

           (4.47) 6622.14 )16.173(101536.1)( −×= − TTk

k(T) is the thermal conductivity of the pebble bed(W/m K), and T is temperature(K). 

In the dynamic model, the above equation is adopted. 

 

Properties: Heat capacity of pebble bed 

 

For the pebble bed, the heat capacity can be determined by the correlation given by[18]: 
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where ε is void fraction of pebble bed, T is node temperature(K), T0 is reference temperature 

(273.16 K), and ρCp is node heat capacity density (J/m3. K). 

 

Reflector properties 

The MPBR design will use graphite as the reflector. In the MPBR operating temperature  
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range, the thermal conductivity of the reflector can be treated as roughly constant, 40 W/m 

K [18]. The density is 1394.8 kg/m3[17]. The specific heat Cp of the reflector as a function 

of temperature can be expressed as[19,20]: 

                                                                  (4.49) ) /(150042.0 KKgJTpC +×=

where T is temperature K.  

     The specific heat and viscosity of helium are required for calculating heat convection in 

the core. They are listed in Appendix D[21] along with other major helium thermal 

hydraulic and transport properties that will frequently be used throughout the modeling. 

 

• Point kinetics model 

 

The critical condition in a reactor represents a delicate dynamic balance between the neutron 

creation rate and neutron destruction rate. Reactor kinetics is the area of reactor physics 

devoted to predicting what happens to the neutron flux density when the balance condition 

associated with the critical condition is disturbed. The neutron production includes the 

prompt neutrons and the delayed neutrons. The prompt neutrons are generated at the 

moment of fission while the delayed neutrons are given off during the decay of the delayed 

neutron precursor nuclei. In reactor kinetics, the precursors can be represented by six groups 

of precursors. By assuming the shape of the neutron flux density is time-independent, which 

means that any local perturbation of the neutron flux density will spread throughout the 

reactor instantly, the core neutronics can be represented by the point kinetics equations 

describing the time-dependent behavior of the neutron flux density in the core. After 

assuming the one-speed diffusion approximation, the point kinetics equations with six 

groups of delayed precursors are [22]: 
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     (4.50) 

where φ is core spatial and average neutron flux density, Ci is concentration of delayed 

precursors of group i, λi is decay constant of delayed precursors of group i, βi = effective 
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delayed-neutron fraction for group i, S is neutron source, υ is neutron speed corresponding 

to energy E, ρ is reactivity of the reactor, Λ is prompt-neutron life time and the sum β is the 

total effective delayed-neutron fraction: 

          (4.51) ∑
=

≡
6

1i
iββ

The delayed neutron data are given in Table 4-2. 

      The general definition of reactivity can be found in [22]. Here we reduce it to 

 
effk

t 11)( −=ρ         (4.52) 

where k  is the effective multiplication factor. The reactivity of the reactor is the sum of 

the reactivity contributions by the core temperature feedback, reactivity control system, 

fission product poisoning and any external disturbance of reactivity. Here, reactivity change 

accounts for that of control system induced

eff

csρ∆ , temperature induced Tρ∆  and xenon 

induced Xρ∆ : 

)()()()( tttt XTcs ρρρρ ∆+∆+∆=        (4.53) 

      The total fission power QT(t) is related to the average neutron flux density φ(t): 

 )()( tVtQ ffT φω Σ=        (4.54) 

where ωf is the usable energy released per fission event, V is the active core volume and Σf 

is the macroscopic fission cross section, m-1 defined as 

ff Nσ=Σ         (4.55) 

where N is the number of fissile nuclei/m3 and σf is the microscopic cross section m2. In the 

nominal operating condition, the MPBR average neutron flux density is approximately 1014 

n/cm2 s [23]. 

       In equation (4.50), the average neutron flux φ can be replaced by the fission power QT. 

After some algebraic manipulations of equations (4.50) with (4.54), equation (4.50) becomes 

 SCQ
dt

dQ
i

iiT
T ++

Λ
−

= ∑
=

6

1
λβρ           (4.56) 
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Note that the precursor concentration Ci has been modified from the old one in equation 

(4.50), Ci,new = ωfΣfυVCi,old, and the neutron source Snew= ωfΣfυVSold. 

      In the current dynamic model, for simplification, one effective delayed group is used in 

the calculations rather than attempting to solve six delayed group equations. An average 

decay constant represents all delayed neutrons: 

16

1

1
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∑
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i i

i
λ
β

β
λ        (4.57) 

and the one-effective-delayed-group point kinetics equations become: 

 SCQ
dt

dQ
T

T ++
Λ
−

= λβρ        (4.58) 

 CQ
dt
dC

T λβ
−

Λ
=  

      These are a set of two coupled ordinary differential equations to represent the transient 

behavior of the thermal power and the decay of the delayed precursors. 

      It needs to be emphasized that the basis of the point kinetics equation derivation is time-

independence of the power distribution, which means the power distribution is fixed during 

any transient and steady state; the normalized fission power distribution is shown in Table 

4.3. 
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Table 4.2 Reactor core neutronic data [1] 

Prompt-neutron life time: 4.0 x 10-4  sec 

Delayed neutron data: 

Group # βi λi 

1 2 x 10-4 0.01 

2 1 x 10-3 0.02 

3 1 x 10-3 0.12 

4 2 x 10-3 0.30 

5 6 x 10-4 1.10 

6 2 x 10-4 2.90 

 

 

  Table 4.3 Normalized fission power distribution in pebble bed region 

Axial direction (from upper to lower) 

0.025 0.034 0.053 0.071 0.091 0.121 0.148 0.171 0.162 0.124 

Radial direction (from inner to outer) 

0.0 0.218 0.207 0.195 0.19 0.19 

 

 

 

• Reactivity model 

 

The reactivity model deals with the reactivity induced by fission product poisoning and 

caused by temperature variation.  
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Fission Product Poisoning  

 

From the viewpoint of criticality and control, the most important fission product poison is 

Xe135 because of its large absorption cross section of about 2.65 x 106 barns at 0.025eV and 

its relatively large fission yield. The current model only considers the absorption of Xe135. 

The time-dependent behavior of Xe135 poisoning during transients is modeled as follows. 

      Xe135 can be produced not only directly as a fission product but also by the β-decay of 

Te135. The relevant part of the fission chain is shown in Figure 4.13. The decay of Te135 is 

fast (19.2 sec), and that of Cs135 is slow (2.6-million-year half-life). Therefore the rather 

complicated scheme can considerably simplified by assuming that I135 is formed directly 

from fission and the chain ends with the destruction by β decay or neutron absorption of 

Xe135. The decay scheme is shown Figure 4.14. The time dependence of the concentrations 

of I135 and Xe135 based on the simplified scheme may be written[22]: 

I
dt
dI

IfI λφγ −∑=         (4.59) 

 XI
dt
dX x

axIfx )( φσλλφγ +−+∑=       (4.60) 

where I is 135I concentration, X is 135Xe concentration, φ  is neutron flux, XI γγ , are effective 

fractions of 135I and 135Xe, XI λλ , are β  decay constant of 135I and135Xe,  is macroscopic 

fission section, and is the microscopic absorption cross section of 

f∑

x
aσ 135Xe. 

The effective fraction and decay constants of I135 and Xe135 are given in Table 4.4. The 

reactivity that the 135Xe concentration contributes during reactor operation is given by: 

 
a

X
a

a

X
a X

∑
−=

∑
∑

−=∆
σρ        (4.61) 

At steady state, the concentrations of I135, Xe135 and the equilibrium reactivity due to the 

Xe135 concentration can be obtained from equations (4.59) and (4.60) setting both left sides 

to be equal to zero. For neutron flux φ(0): 
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      (4.62) 

      Since the decay I135 is much slow (6.58 hr half-life) compared to the load transients in 

the PCU, the fission product poisoning will not greatly affect the reactor characteristics in 

the timeframe of the interest in this study. However, the calculation for the Xe poisoning is 

still included in the dynamic model for the future long-term dynamic studies. 

 

 

  Table 4.4   Fission product fractions and decay constants 

 I135 Xe135 

Fission Product Fraction (%)γ  6.386 0.288 

β - decay constant λ  (1/s) 2.87 x 10-5 2.09 x 10-5 
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Figure 4.13 Xe135 fission-product chain [22] 
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                      Figure 4.14  The simplified decay scheme of  Xe135 
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• Temperature coefficients of reactivity 

 

As the core temperatures change, the other terms will change correspondingly, such as 

neutron spectrum and microscopic cross sections. Therefore, the reactivity will change as 

the temperatures of materials in the core vary. The temperature coefficient of reactivity may 

be defined as the rate of reactivity change per unit temperature change: 

 
T
T

T ∂
∂

=
ρα                   (4.63) 

Integrating over the temperature, we can get the reactivity change Tρ∆ due to a temperature 

change T∆ : 

 TT TT ∆=∆∆ αρ )(         (4.64) 

      A negative temperature coefficient leads to an inherently safe reactor. Increasing the 

core temperature induces a decrease of the effective multiplication constant, and then the 

power of the reactor power will decrease. Therefore, the core temperature will go down to 

the original values. In the same way, as the core temperature decreases, the effective 

multiplication constant increases. As a result, the reactor power tends to increase and the 

core temperature will increase as well. On the contrary, if the temperature coefficient is 

positive, the reactor is unstable and any small disturbance induces its amplification. 

    Since a detailed MBPR core design has not been performed, the temperature coefficient 

of reactivity is adopted as –3.5x10-5[24], which is a rough estimation. The average 

temperature of the core is employed to define the coefficient 

 

 

• Reactor model verification 

 

The reactor model can be verified with the results of other stand-alone calculations. Also, 

the sub-models can be verified with their analytical results, if such exist. The sub-model 

verifications with their analytical results are described as follows: 
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Point kinetics equations verification 

 

For one effective delayed-neutron group point kinetics, the analytical solutions can be 

obtained with S set to zero (no external source). It is usually assumed that the exponential 

form is the general solution of equation (4.56) 

 tt
TT eCtCeQtQ ωω )0()(,)0()( ==       (4.65) 

where ω are the eigenvalues of the coupled differential equations, and QT(0) and C(0) are 

the initial conditions. The general solutions are (For detailed derivation of analytical solution 

see [22] Chapter 7): 
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By using Λ= 4.0 x 10-4 sec, β= 5.0 x 10-3 and λ=5.84 x 10-2 sec-1, the analytical results and 

model numerical results are obtained for both positive and negative reactivity insertion of 

amount |ρ|=0.22%. The results are shown in Figure 4.15.From the figure, the results of 

analytical and numerical calculation for negative reactivity insertion essentially coincide. 

For positive reactivity insertion, the numerical results are slightly higher than the analytical 

ones; the calculation error is caused by use of a relatively large time step size in simulation. 

 

Fission product poisoning verification 

 

The reactivity generated by fission product buildup has a significant impact on the adjusting 

of the control rods in the control of reactor startup after reactor temporary shutdown. 

Therefore, it is important to predict the fission product poisoning for control processes. A 

test simulation was performed to verify the Xe135 buildup after the reactor shutdown. The 

results are shown in Figure 4.16. 

     When the reactor is shut down to φ=0 after operating under equilibrium conditions with 

the neutron flux φ(0), the concentrations of I135 and Xe135 can be obtained from equations 

(4.59) and (4.60) [22]: 
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where XI γγγ +=  

      The time that the concentration of Xe135 reaches maximum is 
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When φ(0)=1018 n/(m2 s), the time predicted by the numerical solution is 10.5hr as shown in 

Figure 4.16. 
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Figure 4.16  Xe135 buildup following core shutdown 
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4.3.2.2  Heat exchanger model  

 

In the MPBR design, heat exchangers are incorporated in the cycle to improve the cycle 

performance. The IHX and recuperator are helium/helium heat exchangers while the 

precooler and intercoolers are helium/water units. In the preliminary design, the IHX will 

use counterflow plat-fine or the printed circuit configurations and the recuperator will be of 

the counterflow plate-fin type. The precooler and intercoolers are expected to be shell-tube 

configurations. The characteristics of the heat exchangers remarkably affect the overall 

transient response to changes of the operating variables. Hence, a reliable dynamic model 

for predicting the performance of a heat exchanger is necessary.  

      Helium is the working fluid both in the hot side and cold side in the IHX and 

recuperator. In the precoolers and intercoolers, the helium is the working fluid in the hot 

side, and water is in the cold side. In the cold side, the highest water temperature is designed 

to be much lower than the water boiling point, so that water remains single phase in the 

precooler and intercoolers. 

      Temperature changes which occur in the inlet of the cold side of a heat exchanger do not 

affect the hot side outlet temperature instantaneously. The lag is determined by the thermal 

capacitances of the wall metal and the working fluids as well as the resistances to heat 

transfer. The dynamic model solves the governing equations based on energy conservation. 

Some simplifying assumptions are made in order to obtain relations that can be solved 

efficiently. The major assumptions are listed as follows: 

1. The heat exchanger is adiabatic. This means that the heat exchanger is insulated 

from the outside surroundings and there is no heat transfer to the environment.  

2. The weight of the side wall is small in comparison with the amount of weight of 

the plates separating the flow passages. The side wall is ignored. 

3. Heat conduction in the longitudinal direction is negligible in both the fluid and 

the solid walls. 

4. For both fluid and solid wall, the temperature only varies in the flow direction. 

This implies that the temperature is only the function of x position (shown in 

Figure 4.17) while the y, z positions do not affect the temperature. 
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1. Nodal scheme 
 

A counterflow heat exchanger can be treated as three regions: the hot fluid side, metal wall 

and cold fluid side. In the longitudinal direction, it is divided into a number of sections; each 

section is a differential element (node) of the heat exchanger. This method is called the 

lumped parameter modeling approach, which also is used in many engineering transient 

analyses for heat exchangers[25]. The nodal scheme is shown in Figure 4.17. As mentioned 

above, there are three regions in a differential element, and the temperature in each region is 

uniform. The hot fluid temperature is Tc, mass flowrate is ; the separating wall 

temperature is T

hm

m; the cold fluid temperature is Tc and mass flowrate is . We use Ucm h to 

denote the overall conductance for the heat transfer between the hot fluid and the separating 

wall, and Uc represents that for the cold fluid and the separating wall. 
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   (b) Differential element (Node) 

   Figure 4.17 Nodal scheme of a heat exchanger 
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2 Transient Differential Equations 
 

The transient equations for the model  are derived basing on the energy balance for each 

region of the differential element presented in the above sketch.  

For hot fluid: 

 )()( ,, hmhhhihoh
h

hhh TTdxdyUCpmTT
t

TCpdxdydz −+−−=
∂

∂ρ   (4.69) 

For separating wall: 

 )()( cmcmhh
m

mm TTdxdyUTTdxdyU
t

TCpdxdy −+−=
∂

∂δρ    (4.70) 

For cold fluid: 

 )()( ,, cmcccicoc
c
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t
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∂

∂ρ   (4.71) 

After arrangement, eqn. (4.69) can be reduced to:  
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eqn.(4.71) can be reduced to: 
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where 

 t = time, s, 
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 dx,dy,dzh,dzc = the spatial dimension of the hot fluid and cold fluid in the differential 

element; m, 

 δ = the thickness of the separating wall, m, 

 Th,Tc = the temperatures of the hot fluid and cold fluids, respectively, K, 

 Th,i, Th,o = the inlet and outlet temperature of the hot fluid region, K, 

 Tc,i, Tc,o = the inlet and outlet temperature of the cold fluid region, K, 

 Tm = separating wall temperature, K, 

 ρh, ρc = the density of hot fluid and cold fluid, respectively, kg/m3, 

 ρm = density of the separating wall, kg/m3, 

 Cph, Cpc = the specific heat of the hot fluid and cold fluid, respectively, J/kg K, 

 Cpm = the specific heat of the separating wall, J/kg K, 

  = the mass flowrate of the hot fluid and cold fluid, respectively, kg/s, ch mm ,

 Uh,Uc = the overall conductance of the heat transfer between the hot fluid and 

separating wall and between the cold fluid and separating wall, respectively, J/m2 K, 

 τh1, τh2, τc1, τc2, τm1, τm2 = time constants, s. When the mass flowrate varies, the 

overall conductance also changes, as a result, the corresponding time constant τ varies. The 

variation of time constant τ responding to a change of the mass flowrate is influenced by the 

heat exchanger design. In Table 4.5 for the IHX design, there is the relation of the Reynolds 

number and St*Pr2/3, in which St is the Stanton number and Pr is the Prandtl number. 

      To simplify solving the differential equation, the energy balance for the helium neglects 

the short holdup times, thus: 

 0=
∂

∂
t

Th  

so that eqn. (4.72) becomes: 

        (4.75) )(,, mhhohih TTnTT −=−

where nh is a constant for the hot side helium: 

 
hh

h
h mCp

dxdyUn =  

nh also changes when the mass flowrate varies. As the length of the differential element 

increases, n increases as well. If nh>2, the initial response of Th,o to a step change in Th,i will 
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be opposite in sign to the input change. It is nonphysical. The number of sections must be 

sufficient so that n<2 at minimum expected flow rates[26]. 

 

3. Verification 
 

Flownet is a general thermal-fluid network analysis code that can model the transient of a 

heat exchanger[27]. Comparisons have been made between the Flownet model and the 

model in this report for simulating a temperature transient of the IHX. The temperature 

transient is that fixing hot side inlet temperature, and helium mass flowrate in the hot side 

and cold side, and then the cold side inlet temperature step increases 100°C from 488.8°C at 

a prescribed time. The IHX is the Concept-NREC printed circuit design, and the design 

details are listed in Table 4.5. The IHX hot side outlet and cold side outlet temperatures of 

the two model results are shown in Figures 4.18 and 4.19, respectively. It can be seen that 

the transient characteristics depicted for the two models are in good agreement for the 

temperature transient.  
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Table 4.5 IHX design details (Printed Circuit Configuration) 

 

Effectiveness, % 95 

Hot-side dP, % 1.77 

Cold-side dP, % 2 

Weight (kg) 75,480  

Metal specific heat (J/kg K) 460 

Thermal cond. (W/m-K) 18.69 

Wall thickness 6 mm 

HT area hot side (m^2) 4262.4  

HT area cold side (m^2) 4262.4 

Length (m) 1.2548  

Hydraulic Diam. (m) 1.13* 10^-3 

UA (W/K) 1.0777*10^7 

Reynolds No. hot side 1,845 

Reynolds No. cold side 1,845 

HT coeff hot side (W/m^2-K) 5735  

HT coeff cold side (W/m^2-K) 5695 

Flow area hot side (m^2)  1.542  

Flow area cold side (m^2) 1.542 

  

    

 Re  f  (friction factor)  j (St*Pr^2/3) 

 300 0.1294 0.02266 

 2000 0.06164 0.01174 

 10000 0.03285 0.006722 
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Figure 4.18 HX model verification: hot side outlet temperature response to cold side inlet 

temperature 100°C step increase at 10 sec 
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Figure 4.19 HX model verification: Cold side outlet temperature response to cold side inlet 

temperature 100°C step increase at 10 sec 
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4.2.3.3 Turbomachinery model 

 

The axial type is adopted as the configuration of all the turbines in the MPBR design. The 

axial turbine preliminary design has been conducted by Concepts NREC based upon 

experience and mean line analysis. The HP turbine and LP turbine are both four-stage axial 

ones. The power turbine is also an axial type and one preliminary and unconfirmed result 

shows it is 23 stages. For compressors, centrifugal type and axial type were both 

investigated by Concepts NREC. The aerodynamic design for a five-stage centrifugal 

compressor has been performed with nominal operating shaft speed of 5900 rpm and its 

estimated performance has been obtained. Also, an axi-centrifugal compressor with eight 

axial stages and one centrifugal stage has been developed with rotational speed of 8000 rpm. 

      After a turbomachine has been fabricated, its complete characteristic can be obtained by 

measuring the operating variables only if it runs in a real plant or a test rig. However,  

estimated characteristics can be obtained based on experience and numerical analysis after it 

has been designed. The overall characteristics of a gas turbine or gas compressor can be 

plotted by using a combination of parameters, i.e. flow coefficient, actual enthalpy rise 

coefficient and ideal enthalpy rise coefficient. If the parameters have been chosen 

appropriately, the speed lines of an axial turbine can be collapsed to a single line, which 

remarkably benefits the numerical convergence if it is used in the dynamic model to 

represent the turbine. The non-dimensional parameters used in this thesis are defined as 

follows: 

 Flow Coefficient=
AU

m
cor

cor
ρ

 

 Actual Enthalpy Rise Coefficient = 2U

h∆  

 Ideal Enthalpy Rise Coefficient = 2U

hideal∆  

where m is the corrected mass flowrate, ρcor cor is the corrected density, A is area, U is the tip 

speed, ∆h is actual enthalpy rise and ∆hideal is the ideal enthalpy rise.  

For a compressor: 

  hhideali ∆∆= /η        (4.76) 
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and for a turbine: 

  ideali hh ∆∆= /η        (4.77) 

where ηi is the isentropic efficiency.  

The power of the turbomachine is  

          (4.78) hmP ∆⋅=

and for a compressor 

  ∆h=Cp(T2-T1)        (4.79) 

for a turbine 

  ∆h=Cp(T1-T2)        (4.80) 

where m is the mass flowrate, T2 is the outlet temperature, T1 is the inlet temperature and Cp 

is helium specific heat. By coupling with the following equation, the outlet pressure can be 

obtained when the power and inlet conditions are known. 

      Knowing the inlet temperature, pressure ratio and isentropic efficiency, the outlet 

temperature can be calculated using Equation (4.10) for the compressor and Equation (4.12) 

for the turbine.  

      If using the above defined non-dimensional parameters, the geometry of the specific 

turbomachine needs to be known, i.e. the blade tip diameter for obtaining the tip speed. In 

order to avoid the need for the specific geometry values of the machine, the non-dimensional 

parameters are redefined in dimensional form. This can be achieved by using the machine 

operating conditions, such as using the rotational speed replaced by the tip speed. The 

parameters are redefined as follows: 

  Flow Coefficient= m  corcor N/

  Actual Enthalpy Rise Coefficient= ∆  2/ corNh

  Ideal Enthalpy Rise Coeffiecient=  2/ corideal Nh∆

where m is the corrected mass flowrate defined by cor

  
1

1
p

Tm
mcor ≡  

and Ncor is the corrected speed defined by 
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1T

NNcor ≡  

where N denotes the rotational speed. Tables 4.6 and 4.7 show the comparisons of the basic 

performance parameters, dimensionless parameters, and dimensioned parameters used in 

this study.  

      The overall plant dynamic model was developed for investigating the interaction of the 

components in transient condition and optimizing the plant cycle. The cycle arrangement 

and nominal operating parameters are variables in the design process. The dynamic model 

should be flexible enough to adapt cycle changes such as various shaft and heat exchanger 

arrangements. When plotting the characteristic, the above defined parameters are normalized 

to the their design point values. Though this method is not rigorous, this characterization of 

performance provides a reasonable and approximate means of defining performance at any 

power, flow or efficiency required. 

 

 

   Table 4.6  Compressor parameter definitions 

 

 Basic Dimensionless 

coefficient 

Dimensioned 

coefficient 

Flow, 

Flow coefficient 

m  )/( UAm corcor ⋅⋅ρ  corcor Nm /  

Power, 

Work coefficient 

Actual enthalpy rise coefficient 

hmP ∆⋅=  2
2/Uh∆  2/ corNh∆  

Pressure ratio 

Pressure coefficient 

Ideal enthalpy rise coefficient 

PR=p2/p1 2
2/Uhideal∆  2/ corIdeal Nh∆  

Isentropic efficiency hhIdeali ∆∆= /η  - - 

Polytropic efficiency(perfect gas) 
)ln(
)ln(

1 TR
PR

p ⋅
−

=
γ

γη
- - 
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   Table 4.7 Turbine parameter definitions 

 Basic Dimensionless 

coefficient 

Dimensioned 

coefficient 

Flow, 

Flow coefficient 

m  )/( UAm corcor ⋅⋅ρ  corcor Nm /  

Power, 

Work coefficient 

Actual enthalpy rise coefficient 

hmP ∆⋅=  2
2/Uh∆  2/ corNh∆  

Pressure ratio 

Pressure coefficient 

Ideal enthalpy rise coefficient 

PR=p1/p2 2
2/Uhideal∆  2/ corideal Nh∆  

Isentropic efficiency ideali hh ∆∆= /η  - - 

Polytropic efficiency(perfect gas) 
)ln(
)ln(

1 PR
TR

p ⋅
−

=
γ

γη
- - 

 

 

      The methodology used here is semi-rigorous and will generate errors with increasing 

magnitude when the pressure ratio, efficiency and flow or tip-speed increasingly deviate 

from the original design. The initial expectation is that the differences of the pressure ratio, 

efficiency and flow with the original design remain small. While curve shape and slope will 

change with the flow coefficient, these changes are expected to fall within the range of 

design variations seen from different manufacturers. 

      Figure 4.20 shows the normalized characteristic of the axial turbine. The normalized 

characteristic of the centrifugal compressor is shown in Figures 4.21 and 4.22. For the axial 

compressor, the performance is shown in Figures 4.23 and 4.24. 

       Using the turbomachine map in the dynamic model implies that the energy storage and 

transport delay in the turbine and compressor are small and negligible. 
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Del-H / Nc^2 and Del-Hi / Nc^2 vs. Wc/Nc (Normalized)
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Figure 4.20 Estimated actual and ideal enthalpy rise coefficient versus flow coefficient of a  

 four-stage axial turbine 
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   Figure 4.21 Estimated actual Enthalpy Rise coefficient versus corrected flow coefficient of  

 a five-stage centrifugal compressor 
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Figure 4.22 Estimated ideal enthalpy rise coefficient versus corrected flow coefficient of  

 a five-stage centrifugal compressor 
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Figure 4.23 Estimated ideal enthalpy rise coefficient versus flow coefficient of an 8+1 axi-

centrifugal compressor 
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Figure 4.24 Estimate actual enthalpy rise coefficient versus flow coefficient of an 8+1 axi-

centrifugal compressor 
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4.3.2.5. Shaft and generator model 

 

In the power conversion system of the MPBR, there are three shafts -- the HP turbine and 

LP turbine drive two compressors respectively and the power turbine provides the 

mechanical power to the synchronous generator for electric production. For the shafts on 

which the HP turbine and LP turbine are mounted, the shaft speeds are determined by the net 

torque exerted on it:  

 
ω)( ct
lossct

II
PPP

dt
dN

+
−−

=               (4.81) 

where N is the shaft rotational speed, Pt is the turbine power, Pc is the compressor power and 

Ploss is the power loss caused by mechanical friction and windage. It is the turbine 

momentum inertia and Ic is the compressor momentum inertia. For the HP turbine, LP 

turbine and each compressor the inertia is estimated to be 100, 100 and 100 kg m2, 

respectively. The mechanical losses on the shaft are estimated to be 1% of the turbine 

power.  

      In normal operating and normal load transients, the generator is synchronized with an 

infinite electric grid, which is characterized by a constant voltage and frequency. The 

generator is kept in synchronization with the grid by the generator power angle. The 

generator power angle works essentially as an integral control on the turbine-generator 

speed through the electric load[28]. However, in this thesis, we still use the torque balance 

equation for the turbine-generator shaft for simplification: 

 
ω)( gt

et
II
PP

dt
dN

+
−

=        (4.82) 

where Pt is the power of the power turbine, Pe is the electric load, It is the total inertia of the 

power turbine and Ig is generator inertia while N is the shaft rotational speed. For the power 

turbine and generator the inertia is 300 and 300 kg m2, respectively. 
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4.3.2.6 Valve model 

 

There are three valves used in the power conversion system – a bypass valve between the 

outlet of the HP compressor and the inlet of the precooler, a valve for helium leaving the 

system to the inventory control vessel and a valve for helium feeding back from the 

inventory control vessel to the system. The flow rate varies with the pressure ratio across the 

valve so long as valve downstream pressure is higher or equal to the critical pressure. When 

the valve downstream pressure is lower than the critical pressure, the flow rate stays 

constant, and this flow is called choked flow. 

       The flow rate through a valve is limited by choked flow and can be calculated by the 

following equation based on single-phase flow[11]. 

  






















−








=

+ γγγ
ρ

/)1(

1
2

/2

1
2

11 2
p
p

p
pTcAm p   (4.83) 

The critical pressure can be determined by: 

  1

1
2

1
2 −









+

=






 γ
γ

γcrp
p       (4.84) 

where γ is Cp/CV: for helium, the critical pressure ratio is 0.487, p1is pressure upstream of 

the valve(Pa), T1 is temperature upstream of the valve(K), ρ1 is density upstream, (kg/m3), A 

is valve area(m2), p2 is pressure downstream of the valve(Pa) and  is mass flowrate (kg/s). m

      The diameter of all three valves is assumed to be11 inches (27.9cm). The valve opening 

delay when responding to the actuator action is ignored. 

 

4.3.2.6 Pipe model 

 

For a pipe with length L and cross section area A, as shown Figure 4.26, the momentum 

equation is as following: 
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  Figure 4.25  The sketch of a pipe 
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−
=     (4.85) 

where m  is the mass flowrate in the pipe, A is cross section area, L is pipe length, p1 is inlet 

pressure and p2 is outlet pressure,  is friction factor, ρ is the density, De is hydraulic 

diameter,  is inlet mass flowrate and  is outlet flowrate, ρ

f

1m 2m 1 is inlet density and ρ2 is 

outlet density.    

      Currently, the pipe model is defined by the following simplified equation: 

   LAmKPPK
dt
md

fr /)( 2
21 ⋅−−⋅=      (4.86) 

where Kfr is a friction coefficient and K is a coefficient, taken as 0.1. The value of K is 

chosen for numerical stability reasons. It will not influence the dynamics of the system but 

enhance numerical stability. In the dynamic model, the pipe diameter is taken as 0.5m. The 

total length is taken as 20m.  

 

4.3.2.7 PI Controller 
 

PID (Proportional-plus-Integral-plus-Derivative) controllers and modified PID controllers 

are widely used in the field of process control systems. It is well known that they provide 

satisfactory control, though they may not provide the optimal control in some situations. In 

this work, PI controllers will be used as automatic controllers. The control action of a PI 

controller is defined by 

  ∫+= t
i

p
p dtte

T
K

teKtu 0 )()()(       (4.87) 
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where Kp is the proportional gain, and Ti is the integral time, e(t) is error signal and u(t) is 

the output signal to an actuator. Both Kp and Ti are tuning parameters. 

 

 

4.3.3 Integration of component sub-models 

 

The overall model was integrated and programmed using the Advanced Continuous 

Simulation Language (ACSL), designated MPBRSim. The flowchart is shown in Figure 

4.26. For the closed cycle, the pressure is the most import parameter in iteration to get 

convergent results. The ACSL implicit integration operator, IMPLC, is used to carry out the 

iteration. The fourth order Runge-Kutta algorithm is used to solve the differential equations. 

Two types of the compressor map are used – centrifugal and axial. As the speed line in the 

axial compressor map is much steeper than that of the centrifugal compressor map, the time 

step size is much smaller when we use an axial compressor map. For a centrifugal 

compressor map, the time step size is 0.02s while it is 1x10-5s for an axial compressor map. 

 

 

4.4 Summary 
 

This chapter presents the numerical methods for the steady state model and the dynamic 

model. The component losses affecting plant performance are described in detail. For the 

dynamic model, the component sub-models are described individually and their integration 

and the numerical solution method are provided. Verification for some component sub-

models is performed. 
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Figure 4.26   Flowchart of the dynamic model 
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5. Results: Control system design 
 

5.1 Introduction 
 

In the MPBR design, we use an indirect cycle, in which an IHX is used to separate the 

primary system and the “secondary” system (power conversion unit). In the PCU, a three-

shaft arrangement is adopted, as shown in Figure 5.1. The generator is synchronized with the 

electric grid. Thus the shaft of the turbine-generator rotates at a rotational speed of 3600 

rpm. The High-Pressure (HP) turbine and Low-Pressure (LP) turbine drive two compressors, 

respectively. In the nominal condition, the shaft of the HP turbine and the shaft of the LP 

turbine both operate with a rotational speed of 8,000 rpm if axial compressors are adopted 

and 5,900 rpm if centrifugal compressors are used. During a load transient, the shaft of the 

HP turbine and the shaft of the LP turbine are both floated. This arrangement necessitates a 

control system to ensure the plant system operates smoothly during normal operation while 

providing safety protection to the plant for anticipated accidents. Because the MPBR design 

is characterized by a high efficiency system, it requires that the plant should remain at high 

efficiency at partial load operation. And, during normal transients, the control system is used 

for meeting the load following requirement as well as for minimizing the thermal stress 

impact on the plant components. 

      In the primary system, the control system implements the conventional reactor control, 

such as regulating the reactor power to match the load requirement, which limiting the core 

outlet temperature. Startup and shutdown of the reactor are also realized by the reactor 

control system. In the PCU, the closed cycle provides a unique control potential and 

availability for regulating electricity output from the system. Bypass mass flow, mass 

inventory reduction and variation of guide vane angle are potential methods for power 

conversion system control. We deliberately integrate the control methods in the primary 

system and those in the PCU to achieve the expected plant transient performance and to 

minimize the thermal stress impact on the components during transients.  
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Figure 5.1 Control configuration for the MPBR 

 

 

5.2 Control strategy 
 

The MPBR control system must be capable of meeting utility requirements for load 

following and control band.  For the system developed in this thesis the following design 

requirements have been imposed on the control system: 

(1) Normal Power Control Band: 50-100% 

(2) Power Reduction During Normal Operation: 10%/min 

(3) Fast Power Reduction During Normal Operation: 10% step change 

(4) Power Increase During Normal Operation: 5%/min 

(5) Load Rejection-Transient: 100% Instantaneous Grid Separation 
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       During normal operation, the control equipment in the primary system and in the PCU 

is all in service to ensure that the plant supply the electricity load demanded by the grid with 

the necessary reliability. The main transients during normal operation are load transients, 

which occur at start up, shut down and during grid load following. Smooth transition from 

one load level to another level is a reliability and safety requirement of the plant. The main 

control goal during a load ramp is avoiding grid separation. One of the control tasks is to 

maintain the turbine-generator shaft speed 60±0.5Hz during normal operations when the 

generator is locked to the grid [1]. Grid separation is mainly caused by the mismatch of the 

frequency of the electricity generated and the frequency of the grid. The grid frequency is 

the synchronized frequency of all the generators connected to the grid. In terms of this plant, 

the grid can be treated as an infinite bus. When the power produced by the power turbine 

differs from the load demand, the turbine-generator shaft accelerates or decelerates. When 

the frequency difference is over a limit, grid separation occurs. During startup to nominal 

operation and during planned shutdown, there should be grid separation. The startup and 

planned shutdown procedures will be investigated in the future. 

      Tripping of plant always causes grid separation. Thus it causes a 100% load rejection 

from full load to no load in a very short time (a fraction of second [2]). In this case, the over-

speed of the turbine-generator has to be controlled within the generator mechanical design 

limit. The over-speed limitation for the generator depends on its design; the value is taken as 

120% here[3]. 

     Due to materials limitations and the high efficiency goal, the core outlet temperature 

needs to be maintained at 900°C in partial load operation. Given the concern of the 

thermocyclic failure of the components, minimizing the thermal stress impact on the 

component is another main consideration for control system design. 

      In summary, the control objectives are as follows: 

(1) During normal operation, maintaining the turbine-generator shaft speed 3600±30 

rpm; 

(2) Maintaining high efficiency during partial load operation; 

(3) Maintaining the core outlet temperature of 900°C during partial load operation; 

(4) Minimizing the thermal stress impact on the components during load transients; 

 131



(5) For 100% load rejection, maintaining the turbine-generator shaft speed within 

120%. 

 

5.3 Control methods 
 

For the indirect cycle, typically, there are two potential control methods in the primary 

system and three in the PCU. In the primary system, there are control rod movement control 

and circulator speed control. Bypass valve control, inventory control and turbine vane angle 

control are the potential control methods in the PCU. The control methods and their 

functions are described in the following. 

 

• Bypass valve control 

    Bypass valves divert the helium flow from the hot side of the IHX (heat source in terms of 

the PCU) and all the turbines. When the bypass valves open, the flow admitted to the hot 

side of the IHX and all the turbines is less. Meanwhile, the pressure ratios of the turbines 

decrease. As a result, the shaft power delivered to the generator is reduced by the combined 

effect of the lowered turbine flow and lowered turbine pressure ratio.  

     Bypass valve control is used to provide for rapid power manipulation, especially for 

power reductions. For example, for a 10% of grid load step reduction, the bypass valve 

opens to make the power produced by the power turbine follow load requirement and 

prevent a grid separation. It is also used to prevent turbine shaft overspeed while the 

generator is not locked to the grid.  

     The bypass valve can quickly reduce the system electric output. But, as the bypass valve 

opens, the working fluid volume flow decreases. The turbine work point shifts from the 

design point, and reduces the turbine efficiency. This is the reason that the plant efficiency is 

reduced when bypass valve control is used. This is corrected by combining the bypass valve 

control and inventory control as explained below. As the bypass valve opens, the running 

point of the turbines shift from the design point, as a result, the outlet temperature of the 

power turbine increases. Thus, there is a thermal shock on the hot inlet side of the 

recuperator and the cold inlet side of the IHX if the bypass valve opens. Inventory control is 
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used to minimize this increase of the flow temperature in the hot inlet side of the recuperator 

and the cold inlet side of the IHX. The heat load increases significantly in the precooler as 

the bypass valve used. 

 

• Helium inventory system 

      A helium inventory system normally consists of a series of helium storage vessels, each 

one with two valves connecting to the high pressure side and the low pressure side of the 

PCU respectively. The number of helium storage vessels will be determined in the future. 

As the grid load is reduced, helium will be withdrawn from the high pressure side of the 

PCU into the vessels. However, if the grid load is to be raised, helium in the vessels is fed 

back into the secondary system at the low pressure side to increase its inventory. The 

inventory variation in the closed cycle of the PCU causes a helium gas density change. 

Lowering the inventory of the PCU results in a reduction of pressure thus the density of 

working fluid as the temperature remains constant. If the temperatures of the PCU are kept 

constant, the sonic speed will not change. And blading and flow passage geometric design 

fix the local Mach numbers. Thus the local velocities are constant throughout the cycle of 

the PCU. Inventory lowering reduces the power turbine output and electric output by 

reducing the massflow through the PCU and vice versa. The turbomachines still operate near 

their design points, since the pressures at every point of the cycle vary in roughly the same 

ratio while the temperatures and flow velocity remain unaltered. Therefore, the plant 

efficiency remains high.  

     The drawback of an inventory control system is that it is not capable of rapid power 

manipulation. This is because of the relatively large time constants characterizing the helium 

transfer between the storage vessels and PCU. For this reason, an inventory control system 

is used in parallel with the other control method, i.e. the bypass valve control.  

      In order to eliminate the large pressure differential between the primary side and the 

secondary side when inventory control is used for partial load operation, inventory control is 

also considered to be used for the primary system.  
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• Control rod movement 

      The heat generated in the reactor core is the only heat source for input to the turbines. As 

the grid electric load varies, to match it, the mechanical power delivered to the generator 

from the turbine must be varied. Therefore, the reactor power must be quickly controlled to 

provide the required thermal power input to the PCU. Adjusting the control rod position in 

the reflector can change the neutron flux level, thus changing the reactor power. 

Furthermore, the rods can shut down the reactor and keep it subcritical at any operating 

condition. Also, the reactivity induced by the control rods movement should compensate for 

the reactivity caused by the fission products (i.e. xenon) and the fuel and moderator 

temperature coefficient of reactivity during reactor power variation. 

      The control shutdown system consists of two reactivity subsystems. One is the reactivity 

control system and the other is the small-sphere shutdown system. The reactivity control 

system consists of two sets of control rods located in the side reflector; one set of control 

rods can be moved freely for regulating power control while the other set is for shutdown of 

the reactor. If hot shutdown is required, the control rods drop by gravity into the core. For 

long-term, cold reactor shutdown, the small-sphere shutdown system is used. The poison-

containing small spheres are released into the columns in the side reflector. 

     Although control rod movement provides the capability of regulating the reactor power, 

it probably is not needed for normal operating transients due to the high negative 

temperature coefficient of reactivity of the MPBR design. This is a significant advantage of 

the pebble bed reactor system. 

 

• Circulator speed variation 

    The circulator circulates the helium through the primary system. The mass flowrate is 

proportional to the circulator speed as the inventory in the primary system remains 

unaltered. If the circulator speed is adjusted, the mass flowrate is changed correspondingly. 

If the reactor power decreases, the core outlet temperature decreases under the condition that 

the core inlet temperature and mass flowrate remain unaltered. Then the inlet temperature of 

the turbines in the PCU decreases. This results in a reduction of the turbine efficiency. To 

 134



maintain high temperature to the turbine, circulator speed variation is used to maintain the 

core outlet temperature constant.  

 

• Vane angle control 

      Both for gas turbines and compressors, the map is unique for a fixed value of inlet flow 

angle. Changing the inlet flow angle will modify the map in certain key operating ranges. A 

suite of maps can be plotted with the inlet flow angle as an independent variable. VIGVs 

(Variable inlet guide vanes) for compressors and variable area NGVs (nozzle guide vanes) 

for turbines provide working line control to ensure the operating point without crossing the 

surge line [4, 5]. 

      VIGVs are mainly employed to allow a compressor to have an acceptable low speed 

surge line. Variable area NGVs are occasionally used on LP or power turbines for 

recuperated cycles to maintain high turbine outlet temperature, and hence heat recovery, at 

partial load[5]. Compared with compressor VIGVs, the turbine NGVs work in a far higher 

temperature environment. As a result, the operating mechanism for control turbine NGVs is 

expensive and complex. It is not practical to use the NGVs for the HP turbine due to the 

high temperature. In this work, vane control is not included. 

 

5.4 Configuration of control system 
 

The control system configuration for the current design is shown in Figure 5.1. The bypass 

valve is located between the outlet HP compressor and inlet precooler, at which point the 

temperatures are low, allowing conventional industrial valves to be used. Currently, the 

helium inventory system consists of two storage tanks, which are connected via two pairs of 

inventory control valves with the PCU. The volume of the tanks will be determined in 

further design work. One pair of inventory control valves connect with the inlet precooler 

while another pair connect with the outlet HP compressor. This configuration requires no 

compressor between the vessels and the PCU. 
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      In the situation of total load rejection – grid separation, the concern is the overspeed of 

the turbine-generator shaft. It is necessary to generate an alarm signal and completely stop 

the helium circulation through the power turbine right after the accident. Due to the high 

temperature, it is difficult to use a bypass valve around the power turbine to divert the 

helium flow. The solution to prevent overspeed of the generator in the condition of grid 

separation is quickly connecting the generator to a resisting load source, such as an air or 

water cooled resistor heater as a turbine-generator brake.  

       As shown in Figure 5.1, the circulator is installed at the location which connects the 

outlet of the hot side of the IHX and the core inlet. Thus this takes advantage of the low 

temperature of the primary cycle. The circulator is driven by a variable speed electric motor, 

its speed is adjusted continuously. As a result, variable mass flowrate of the primary system 

is achieved. 

 

5.5 Automatic control system 
 

To achieve the power control goal, individual control subsystems must coordinate with each 

other based on the control strategy. In the MBPR design, the control system is facilitated by 

a set of PI controllers using feedback loops, as shown in Figure 5.2. The controllers control 

several independent variables to perform the control functions. These are: 

(a) Turbine-generator shaft speed; 

(b) Helium mass inventory in the inventory vessel or the bypass valve position; 

(c) Core outlet temperature; 

(d) Mass flowrate of the primary system. 

      There are several controllers: inventory valve controller, bypass valve controller, 

circulator speed controller and control rod controller. The controllers send their signals to 

the corresponding actuators to operate of the control subsystems. Taking the bypass valve 

controller as an example, it receives the regulating command signal, which calls for the 

turbine-generator shaft speed which the operator demands (e.g. 3,600 rpm), and compares 

the shaft’s actual speed measured by the sensor, and thus generates an error. This error is 
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used by the controller to generate a control signal based on the PI algorithm, then the control 

signal is sent to the bypass valve actuator to manipulate the opening of the bypass valve. In 

order to prevent continuously opening and closing of valves caused by small variations of 

the controlled variables, a small threshold is put on the control signal. This control process is 

continued to ensure the actual turbine-generator shaft speed matches the desired speed of the 

regulating demand.  

The preliminary design of the control system has been described above. Since the 

components of the PCU have not all been designed, in the preliminary simulation, 1000 m3 

of volume is assumed for the PCU and 500 m3 for the inventory vessels. 

Vane angle control is not used in the current design stage. The PI controller tuning 

parameters are listed in Table 5.1. 

 

5.6 Summary 
 

This chapter presents the control strategies for the MPBR and the potential control methods 

on the reactor side and the PCU side. The configuration of the control system is designed 

and the control algorithm is defined. The transient performance of the plant using the 

designed control scheme will be shown in the following chapter.  
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   Figure 5.2  Control feed back loops 
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Table 5.1 Parameters of PI controllers 

 

Controller Controlled 

variable 

Manipulated 

variable 

KP Ti 

Bypass valve 

controller 

Turbine-generator 

shaft speed 

Bypass valve open 

position 

1x10-4 1x10-5 

Inventory valve 

controller 

Bypass valve 

open position or 

inventory of the 

PCU 

Inventory valve 

open position 

0.5 1x10-7 

Circulator 

controller 

Mass flowrate of 

the primary 

system 

Circulator speed 1x10-4 1x10-5 

Control rods 

controller 

Core outlet 

temperature 

Reactivity induced 

by control rods 

1x10-4 1x10-7 
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6. Results: Plant analysis 
 

6.1 Introduction 
 

In Chapter 4 and Chapter 5, the steady state model and the dynamic model have been 

described and the control system configuration has been defined. In this chapter, cycle 

parametric analysis is performed using the steady state model. Then the dynamic model will 

be used to evaluate load step transients and load ramps. The bypass valve control method 

and the inventory control method will be utilized. The transient calculation will demonstrate 

the interaction between the reactor core and the PCU. The control method will be provided 

for grid disconnection. For verifying the PCU part of the dynamic model, the load step 

transient result under the condition of fixing the IHX hot inlet temperature will be compared 

with a similar Flownet model. 

      The cycle design and its salient parameters will be given. Overall, the controllability of 

the cycle will be confirmed. 

 

 

6.2 Steady state parametric analysis 
 

The selection of the cycle parameters and configuration has a pronounced effect on the cycle 

performance. Calculations are performed to evaluate the effects of the cycle parameters on 

the cycle efficiency. For simplification, the calculations do not include the RPV cooling 

passages. With regard to other losses, the station load is assumed as 2.5MWe and other 

losses are ignored. The expression of cycle efficiency is as follows: 

  %100×
−−

=
fission

cirslgen
cycle Q

WWW
η      (6.1) 

where cycleη  is the cycle efficiency, Wgen is the output of the generator, Wsl is the station 

load, Wcir is the power consumed by the circulator and Qfission is the reactor thermal power. 

The following parameters are included in the analyses: Core outlet temperature, compressor 

inlet temperature, IHX efficiency, turbine polytropic efficiency, compressor polytropic 

efficiency, recuperator effectiveness, component pressure losses and diverted mass flowrate 
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from compressors due to leakage or cooling. When we study one parameter, such as core 

outlet temperature, the other parameters of the cycle are assumed constant as the core outlet 

temperature varies. The analyses are based on the cycle design as shown in Figure 3.10. 

Other parameters are listed in Table 6.1.The following gives the effect of each parameter on 

the cycle efficiency. 

 

 

  Table 6.1 The component parameters for parametric analysis 

 

Reactor 

     Fission power 

     Core pressure drop 

 

250 MWth 

2% 

Generator 

     Efficiency 

 

98% 

IHX  

     Effectiveness 

     Pressure drop 

 

     Pressure difference 

 

95% 

1.77% (hot side) 

2% (cold side) 

0.1MPa 

Recuperator 

       Effectiveness 

       Pressure drop 

 

95% 

0.8% (low press. side) 

0.13%(high press. Side)

Circulator 

    Isentropic efficiency 

 

90% 

Precooler 

     Pressure drop 

 

0.8% (helium side) 

Turbines 

    Polytropic efficiency 

    Mechanical loss 

 

92% 

1% 

Intercoolers 

     Pressure drop 

 

0.8% 

Compressors 

     Polytropic efficiency 

     Inlet temperature  

 

90% 

30°C 

HP compressor 

outlet pressure 

8MPa 

 

Motor for driving 

circulotor 

     Efficiency 

 

 

98% 
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 Reactor core outlet temperature 

 

A gas turbine can produce more work as the turbine inlet temperature increases with a 

constant pressure ratio. In an indirect cycle, two factors, the core outlet temperature and IHX 

effectiveness, govern the turbine inlet temperature. Figure 6.1 shows the cycle efficiency as 

a function of cycle pressure ratio for three core outlet temperatures: 850°C, 900°C and 

950°C. The pressure ratio is defined as the ratio of the lowest pressure to the highest 

pressure of the secondary cycle. As can be seen, for a specific core outlet temperature, there 

is an optimum cycle pressure ratio which gives the highest cycle efficiency. For example, 

with a core outlet temperature of 850°C, the highest cycle efficiency is about 48.2% and the 

pressure ratio is about 2.6. In this case, the core inlet temperature is 525°C. As mentioned 

before, the IHX primary outlet temperature is limited to 427°C in conformity with ASME 

code Section III class I. Thus active cooling must be considered for any design .  
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Figure 6.1 Cycle efficiency versus the pressure ratio as a function of core outlet temperature 
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From Figure 6.1, a core outlet temperature increase of 50°C would result in a gain of cycle 

efficiency of 1.5 percent point. One thing should be pointed out that the potential materials 

used as core outlet piping and the IHX primary side structure need to be fully tested if the 

core outlet temperature rises to 950°C because metal test data is unavailable in a radioactive 

environment at such high temperatures.  

 

 Compressor inlet temperature 

 

In the cycle design, the compressors are driven by the turbines. If the consumed power of 

the compressor decreases, it would increase the net output power of the cycle, thus increase 

the cycle efficiency. For a compressor, decreasing its inlet temperature causes the consumed 

power to decrease when maintaining the same pressure ratio. Figure 6.2 shows the cycle 

efficiency and pressure ratio versus the compressor inlet temperature. From this figure, the 

compressor inlet temperature has a significant effect on the cycle efficiency. Decreasing the 

compressor inlet temperature by 1°C can achieve an cycle efficiency increase by a value  
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     Figure 6.2  The effect of compressor inlet temperature on the cycle performance 
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of 0.13 percentage point. That means that an 8°C the compressor inlet temperature reduction 

causes a cycle efficiency gain of around 1 percentage point.  

      In the cycle design, the precooler and intercooler are usually used to cool the working 

fluid before it enters the compressors. In the MPBR, the working fluid is helium. In 

consideration of the size of the precooler and intercooler, the precooler and intercooler are 

helium/water type heat exchangers. MPBR is supposed to be built not only offshore of 

rivers, lakes and the sea but also in the desert areas lacking water. Therefore, in the MPBR, 

the cooling water of the precooler and intercooler is supplied by a cooling tower. The outlet 

water temperature of the cooling tower depends on the local weather where the plant is 

located. In the MPBR system design, the outlet water temperature of the cooling tower is 

assumed to be 27°C. Comparing with other similar system designs such as the GT-MHR, 

which the water temperature is assumed 22°C, 27°C is conservative.  

 

 IHX effectiveness 

 

As the component directly transferring heat from the primary system to the PCU, the IHX 

plays an important role on the cycle performance. Figure 6.3 shows the cycle efficiency with 

respect to the cycle pressure ratio as the IHX effectiveness changes. From the figure, one 

can be seen that higher IHX effectiveness causes higher cycle efficiency. An increase of the 

IHX effectiveness from 90% to 95% results in a cycle efficiency increase of about 0.8 

percentage point when the plant is running at the optimum pressure ratio. However, the IHX 

effectiveness has a significant impact on its size, thus cost. In Chapter 3, it was shown that 

the size of the heat exchanger would be increase by around 75%, the weight by around 

100%, thus the cost by around 100% if the effectiveness increases from 90% to 95%. 

 

 Recuperator effectiveness 

 

The recuperator recovers the energy exhausted from the power turbine, thus increases the 

cycle efficiency. The cycle efficiency for different recuperator effectiveness is shown in 

Figure 6.4. From the figure, the cycle efficiency undergoes a considerable increase as the 

recuperator effectiveness rises in the low cycle pressure ratio range. As the pressure ratio 
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increases, the importance of the recuperator effectiveness decreases. The reason is explained 

as follows. For a given power turbine inlet temperature, the temperature of turbine exhaust 

gas is high at low pressure ratios. Then the temperature differential between the turbine exit 

helium and high-pressure compressor discharge helium is large. Therefore, the gain in 

recovering the turbine exhaust heat is significant. In contrast, in the high pressure ratio 

range, the temperature differential is small, which results in a cycle efficiency that is 

insensitive to the recuperator effectiveness.  

      The recuperator will also be a compact heat exchanger; the relationship of size and 

effectiveness is the same as for the IHX. 

 

 Turbomachine efficiency 

 

As with the power conversion components, the efficiencies of the turbine and compressor 

also play important roles in cycle performance. Figure 6.5 and Figure 6.6 show the effect of 

the turbine and compressor efficiencies on the cycle efficiency. Both for turbine and 

compressor, an efficiency increase of 2 percentage points causes a cycle efficiency increase 

of approximately 1 percentage point. The maximum efficiency achievable for turbomachines 

is determined by the manufacturers technology. For the current technology, 90% polytropic 

efficiency for the compressor can be achieved while 92% is possible for the turbine. 
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 Figure 6.3 Effect of IHX effectiveness on the overall cycle efficiency 
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 Figure 6.5 Effect of turbine efficiency on the overall cycle efficiency 
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 Figure 6.6 Effect of compressor efficiency on the overall cycle efficiency 
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 Stage numbers of intercooling 

 

The effect of intercooling stage number is shown in Figure 6.7, which displays the results of 

non-intercooled, 1 intercooling stage and 3 intercooling stages. A 0.8% helium side pressure 

drop for each intercooler is assumed. It can be observed that the benefit of cycle efficiency 

with more intercooling stages is large in the high pressure ratio range, and the benefit 

becomes less and less as the pressure ratio decreases. When the pressure ratio decreases 

below a specific value, the cycle efficiency of the intercooled cycle is even less than that of 

a non-intercooled one. The reason is that there are pressure losses associated with the 

intercoolers, and the pressure losses result in a reduction of cycle efficiency. Thus the 

benefit of cycle efficiency obtained by intercooling is offset by the intercooler pressure 

losses when the pressure ratio is lower than a specific value. From the figure, it also can be 

seen that the cycle efficiency increase is remarkable for 1-stage intercooling compared with 

a non-intercooled cycle, however, the effect is less and less if the intercooling stage number 

increases. Considering the complexity and cost induced by the intercoolers, the intercooling 

should not be more than 3 stages. 

 

 Cycle pressure losses 

 

Higher cycle pressure losses, both in the primary cycle or the secondary cycle, consume 

more compressor or circulator work for providing higher working fluid pressure head, thus 

leading to lower cycle efficiency. On the contrary, reducing the cycle pressure losses 

increases the cycle efficiency. As indicated in Chapter 4, the cycle pressure losses consist of 

the losses in the components and the losses of the piping connecting them. Table A-1 of 

Appendix A lists three recuperator design results which possess different pressure losses but 

with the same effectiveness of 95%. The pressure losses are as follows: 0.8% (hot side) and 

0.13% (cold side); 1.4% (hot side) and 0.23% (cold side); 2% (hot side) and 0.33% (cold 

side). Figure 6.8 shows the cycle maximum efficiencies using three recuperator designs 

while other cycle parameters remain constant. 
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 Figure 6.7 Intercooling stage number effect on the cycle efficiency 
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 Figure 6.8 Cycle efficiency in three recuperator design conditions 
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       The pressure losses in a component evolve with its size. Taking the heat exchanger as 

an example, the one with lower pressure losses possesses a larger size, and thus heavier 

weight,and higher cost under the condition that the effectiveness remains constant. From 

Table 3.7 of Chapter 3, we can see that the design with lower pressure losses possesses 

larger size and heavier weight while the effectiveness remains constant. 

 

 Bleeding helium from compressors 

 

 As described in Chapter 4.2.1, in practice, 1~2% mass flowrate of total compressed gas is 

required to be bled off for cooling the turbine disc and blade roots. In the three-shaft 

arrangement, we assume bleeding the HP compressor outlet helium to cool the HP turbine 

discs and blade roots while using MP compressor #1 outlet helium for the LP turbine and 

power turbine. The effect of bleed helium amount on the maximum cycle efficiency is 

shown in Figure 6.9. It can be seen that there is a linear relation between the maximum cycle 

efficiency and the amount of bleeding helium. Bleeding 1% of total mass flowrate both from 

the HP compressor and MP compressor #1 reduces the maximum cycle efficiency by 0.21 

percentage point. 

 

 Sensitivity analysis results 

 

To reveal the relative importance of the cycle parameters around the design point, the results 

in the previous figures are summarized in Figure 6.10. Figure 6.10 shows the cycle 

efficiency change resulting from a small percentage change from the design value for a 

specific parameter, while maintaining other parameters at the design value. The design value 

for each parameter is given in the parentheses on the line label. From Figure 6.10, the 

relative degree of sensitivity among the parameters is easily obtained. The order of 

sensitivity, from the most to the least, is as follows: (1) Recuperator effectiveness, (2) 

Compressor polytropic efficiency; (3) Turbine polytropic efficiency; (4) IHX effectiveness; 

(5) Core outlet temperature; (6) Secondary cycle pressure losses; (7) Compressor inlet 

temperature. It should be pointed out that the cost for improving the component performance 

by a specific percentage value is different for various components. 
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Figure 6.9 The effect on the cycle performance by bleeding helium from the HP compressor 

and MP compressor #1 to cool the turbine discs and blade roots  
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 Figure 6.10 Sensitivity of cycle efficiency to component parameters on the cycle  
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6.3 Transient analysis 

 

6.3.1 Verification with Flownet model 

 

In the same way as for the verification of the heat exchanger model, Flownet was also used 

to verify the PCU part of the dynamic model. Flownet is a general thermal-fluid network 

analysis code that can model both steady-state and transient flows. It uses nodes and 

elements to numerically represent the physical components. Its solver, using the implicit 

pressure correction method, solves for the conservation of mass and energy at all nodes and 

momentum in all elements. The code can deal with a wide range of network components, for 

example, turbines, compressors, pipes, valves, heat exchangers. A similar model has been 

built using Flownet for the MPBR cycle. The schematic of the Flownet model is shown in 

Figure 6.11. Since the code part for the pebble bed nuclear reactor has not been provided, a 

pipe (Element 21 in Figure 6.11) is used to represent the reactor core, and its outlet 

temperature is fixed at 900°C at any time. This implies that the core outlet temperature is 

fixed. Due to the large thermal inertia of the pebble bed reactor core, this assumption is 

reasonable for a short time period (less than 50 seconds) after transients. The maps of the 

centrifugal compressors and the maps of the axial turbines are the ones provided by Flownet 

itself.  

      For reaching the initial steady state, the inlet pressure of the LP compressor (Node 2) is 

fixed at 2.71MPa, and the temperatures, pressures and mass flowrates in the water sides of 

the precooler and intercoolers are all fixed. In the primary side, the pressure of Node 19 is 

fixed as 8.0MPa. By setting the diameter of the piping in the primary, thus the primary side 

mass flowrate, the total heat transfer from the primary cycle to the secondary cycle is 

determined. For a specific total heat, Flownet adjusts the HP turbine shaft speed and LP 

turbine shaft speed to obtain an equilibrium HP compressor outlet pressure. The initial 

steady state is balanced with the total heat transfer from the primary cycle to the PCU of 

265.7 MW, the PCU maximum pressure of 8.0MPa and mass flowrate 136.4kg/s. The total 

transferred heat and mass flowrate are slightly higher than the MPBR cycle design values of 

257.9MW and 126.7kg/s. However, the small differences of the steady state parameters will 

not affect the cycle dynamic characteristics. In the Flownet model, a PI controller is used to 
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adjust the bypass valve opening diameter via sensing the power turbine shaft speed. The 

proportional gain and the integral time are 0.035 and 0.008, respectively. 

      In MPBRSim, the inlet temperatures of the compressors are set as constant at 30°C, 

which assumes that the cooling capacity of the precooler and intercoolers is very large. A PI 

controller is also adopted to adjust the bypass valve opening area according to the power 

turbine shaft speed. The transient response of a control system usually exhibits damped 

oscillations before reaching a new steady state. These will be demonstrated in the simulation 

results.  

      Two models were used to simulate a load transient – electric load 20% step reduction in 

1 second. During plant operation, the generator generates electricity to meet the utility 

requirement. As the electric load decreases, the excess power produced by the power turbine 

drives the turbine-generator shaft speed up. After the PI controller senses the power turbine 

shaft is over the setpoint 3600 rpm, the actuator opens the bypass valve to decrease the mass 

flowrate of all the turbines, and to make the power turbine shaft speed back to the setpoint. 

The calculated cycle responses of the two models are shown in the figures from 6.12 to 6.18. 

      From the figures, it can be seen that both models demonstrate the same trends of the 

dynamic characteristics during load transient. After electric load reduction, the speed of the 

power turbine shaft increases, resulting in a bypass valve mass flowrate rise. The speeds of 

the HP turbine shaft and the LP turbine shaft both decrease; The pressure of the low pressure 

zone (LP compressor inlet) increases and the pressure of the high pressure zone (HP 

compressor outlet) decreases, which means the pressure ratio of the cycle decreases. After 

reaching a new steady state, the speeds of the HP turbine shaft and LP turbine shaft are both 

lower than their initial values. The inlet temperature of the IHX cold side is higher than its 

initial value. At the new steady state, the speeds of the HP shaft and LP shaft in the Flownet 

model are about 200rpm higher than that of MPBRSim. The differences of the speeds of the 

turbine shafts might be caused by using different compressor maps, though they are all 

centrifugal maps. Generally, the response of MPBRSim is slightly faster than those of the 

Flownet model. This may be attributed to the ignoring the gas compressibility in the gas 

volume of the heat exchangers in the MPBRSim. 

      Based on these results it is appropriate to now extend the model to include the reactor 

model. 
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Figure 6. 11 Schematic of the Flownet model 
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Figure 6.12 Power turbine shaft speed response to 20% load step reduction, compared to the 

Flownet model 

 

4000

4200

4400

4600

4800

5000

5200

5400

5600

5800

6000

0 5 10 15 20 25

Time (sec)

R
ot

at
io

na
l s

pe
ed

 (r
pm

)

MPBRSim
Flownet

 
Figure 6.13 HP turbine shaft speed response to 20% load step reduction, compared to the 

Flownet model 
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Figure 6.14 LP turbine shaft speed response to 20% load step reduction, compared to the 

Flownet model 
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Figure 6.15 Pressures response to 20% load step reduction, compared to the Flownet model 
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Figure 6.16 Mass flowrate response to 20% load step reduction, compared to the Flownet 

model 
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Figure 6.17 Compressors temperatures response to 20% load step reduction, compared to the 

Flownet model 
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Figure 6.18 IHX temperatures response to 20% load step reduction, compared to the 

Flownet model 

 

6.3.2 10% load step change – bypass valve control used 

 

This transient simulates a 10% load rejection from 100% with the power conversion system 

in which the type of compressor is axial. Bypass valve control is used to maintain the speed 

of the power turbine shaft at 3600 rpm. In this simulation, the core fission power is adjusted 

through the reactivity caused by the fuel temperature change while the control rods have not 

been used for maintaining the core outlet temperature. Thus, the reactor core outlet 

temperature varies. For simplicity, the inlet temperatures of the compressors have been kept 

constant at 30°C. Figures 6.19 to 6.32 show the response of the plant. 

      Due to the load reduction, a positive net torque is present on the power turbine shaft, 

resulting in an increase of the shaft speed. The PI controller sends a signal to the bypass 

valve actuator to open the bypass valve. As the bypass valve opens, a stream of working 

fluid bypasses all the turbines and the mass flowrate of the compressor increases. Since less 

mass flowrate passes through the turbines, the turbine operation points shift from their 

design points. The shifting of the turbine operation point results in an increase of turbine 

outlet temperature. From Figure 6.29 we can see that the outlet temperature of the power 
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turbine increases about 23°C just after the transient and the increase becomes 17°C after 

reaching new steady state. The combination of the reduced mass flowrate and increase inlet 

temperature of the secondary side of the IHX makes the heat removed from the primary 

cycle decrease, as shown in Figure 6.19. As a result, the core inlet temperature increases and 

the fuel average temperature rises. Because of the temperature coefficient of the reactivity, 

negative reactivity is induced in the reactor core, which reduces the fission power. The 

fission power reduction results in a core outlet temperature decreases and the fuel average 

temperature decreases and approaches the initial value. 

      When the bypass valve opens, the outlet pressure of the power turbine increases; and 

thus the pressure ratios of turbines decrease. The lower pressure ratio and the reduced mass 

flowrate make the power output of turbines decrease. For compressors, their mass flowrates 

increase as the bypass valve opens. As a result, on the HP turbine shaft or LP turbine shaft, 

the total power of compressors is higher than their corresponding turbine power, a negative 

net torques is imposed on the shaft, causing its speed decrease as shown in Figure 6.24. 

After that, due to the slower rotational speed, the compressors consume less power and their 

outlet temperatures decrease. Figure 6.30 shows the temperatures of the compressors. At the 

new steady state, since the turbines are not working at their design points, their pressure 

ratios are lower than the nominal values. The cycle pressure ratio is lower than the nominal 

one, thus the pressure in the low-pressure zone is higher than its initial value while the 

pressure in the high-pressure zone is lower than its initial value.  

      From the figures, we can see that the response of the PCU is much faster than that of the 

reactor. For example, the speeds of the HP turbine shaft and the LP turbine shaft decrease 

swiftly to their new steady-state values during the first 20 seconds after the transient while 

the core outlet temperature remaines around 900°C for as long as 40 seconds, shown in 

Figures 6.24 and 6.27.  

      After reaching a new steady state, the bypass valve mass flowrate is about 2.8kg/s, 2.2% 

of the total mass flowrate. The fission power is 91.2% of the original power level, which 

means using bypass valve control does not dramatically degrade the cycle efficiency. 

However, opening the bypass valve results in that the inlet temperature of the low-pressure 

side of the recuperator increases about 17°C, and the core inlet temperature increases about 

19°C, causing thermal stress on the recuperator and reactor structures.  
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Figure 6.19 Electric load and reactor fission power in 10% load step reduction with bypass 

valve control used 
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Figure 6.20 Reactor reactivity in 10% load step reduction with bypass valve control used 
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Figure 6.21 Power of components on the HP turbine shaft in 10% load step reduction with 

bypass valve used 
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Figure 6.22 Power of components in the LP turbine shaft in 10% load step reduction with 

bypass valve control used 
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Figure 6.23 Power turbine shaft speed in 10% load step reduction with bypass valve control 

used 
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Figure 6.24 Speeds of the HP turbine shaft and the LP turbine shaft in 10% load step 

reduction with bypass valve control 
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Figure 6.25 Bypass valve mass flowrate in 10% load step reduction with bypass valve 

control used 

 

100

105

110

115

120

125

130

135

140

0 50 100 150 200 250 300 350 400 450

Time (sec)

M
as

s 
flo

w
ra

te
 (k

g/
s)

LP compressor

HP turbine

 
Figure 6.26 Mass flowrates of the HP turbine and LP compressor in 10% load step reduction 

with bypass valve control 
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Figure 6.27 Core inlet and outlet temperatures in 10% load step reduction with bypass valve 

control used 
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Figure 6.28 Fuel average temperature in 10% load step reduction with bypass valve control 

used 
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Figure 6.29 Temperatures of turbines in 10% load step reduction with bypass valve control 

used 

 

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450

Time (sec)

Te
m

pe
ra

tu
re

 (d
eg

 C
)

Compressor inlet

LP compressor outlet

HP compressor outlet

 
Figure 6.30 Temperatures of compressors in 10% load step reduction with bypass valve 

control used 
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Figure 6.31 Pressures of compressors in 10% load step reduction with bypass valve control 

used 
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Figure 6.32 Pressures of turbines in 10% load step reduction with bypass valve control used 
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6.3.2 10%/min and 5%/min load ramp 

 

Two load ramp scenarios are simulated. The first is the load decrease from 100% to 50% 

followed by an up load from 50% to 100%. For this ramp, only bypass valve control is used. 

The second ramp is a load decrease from 100% to 50% followed by 50% partial load 

operation. With this partial load operation, both bypass valve control and inventory control 

are used.  

 

1. Load ramp: 100%  50% at a rate of 10%/min and 50%  100% at a rate of 

5%/min 

 

At 10 seconds, the load decreases from 100% at a rate of 10%/min. After reaching 50%, the 

load remains at this level until 2000 seconds. At 2000 seconds, the load increases to 100% at 

a rate of 5%/min.  

      For simulating this load ramp, a centrifugal compressor map is used. The following 

control methods are used: 

(1) Bypass valve control; 

(2) Control rod control is used to maintain the core outlet temperature at 900°C. 

The plant responses are shown in Figures 6.33 to 6.39. 

      In Figure 6.33, one can see that the reactor fission power follows the load ramp after 

about a 100 to 200 second delay. From the figures, when the fission power goes back to 

100%, the bypass valve is almost closed. And all the temperatures and pressures in the cycle 

resume their original values.  

      During the period of time from 310 seconds to 2000 seconds for 50% partial load 

operation, the bypass valve mass flowrate is about 19 kg/s. The fission power level is 55%. 

This shows that the bypass valve control does not significantly degrade the cycle efficiency. 

However, the core inlet temperature rises 170°C, which will violate temperature limits. This 

introduces the consideration of using inventory control to eliminate the large temperature 

increase and the thermal stress on the components.   
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Figure 6.33 Electric load and reactor fission power in the load ramp from 100% to 50% at 

10%/min and then back up to 100% at 5%/min, bypass valve control is used and centrifugal 

compressor map is used 
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Figure 6.34 Core outlet/inlet temperature in the load ramp from 100% to 50% at 10%/min 

and then back up to 100% at 5%/min, bypass valve control is used  and centrifugal 

compressor map is used 
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Figure 6.35 Reactivity in the load ramp from 100% to 50% at 10%/min and then back up to 

100% at 5%/min, bypass valve control is used and centrifugal compressor map is used 
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Figure 6.36 Turbine-generator shaft speed in the load ramp from 100% to 50% at 10%/min 

and then back up to 100% at 5%/min, bypass valve control is used centrifugal compressor 

map is used 
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Figure 6.37 HP turbine shaft speed and LP turbine shaft speed in the load ramp from 100% 

to 50% at 10%/min and then back up to 100% at 5%/min, bypass valve control is used 

centrifugal compressor map is used 
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Figure 6.38 Bypass valve mass flowrate in the load ramp from 100% to 50% at 10%/min 

and then back up to 100% at 5%/min, bypass valve control is used and centrifugal 

compressor map is used 
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Figure 6.39 Compressor pressures in the load ramp from 100% to 50% at 10%/min and then 

back up to 100% at 5%/min, bypass valve control is used and centrifugal compressor map is 

used 

 

2. Load ramp from 100% to 50% with a rate of 10%/min 

 

This transient simulates a load ramp from 100% to 50% with a rate of 10%/min. The axial 

compressor map is used. The following control actions are employed: 

(1) Bypass valve control is used to maintain the turbine-generator shaft speed; 

(2) Inventory control is used to adjust the inventory of the PCU; 

(3) The primary mass flowrate is set identical to the secondary mass flowrate. 

      In the primary system, control rod control is not used so that the reactor fission power is 

adjusted to solely depend on the temperature coefficient of reactivity. The helium inlet 

temperature of the compressors is kept constant at 30°C. Figures 6.40 to 6.50 show the 

responses of the plant.  

      At 10 seconds, the load starts to decrease with a rate of 10%/min, the bypass valve opens 

instantaneously and the inventory valve also opens to withdraw helium from the PCU to the 

 172



inventory vessel, as shown in Figures 6.40 and 6.43. When the bypass valve opens, the HP 

turbine shaft speed and LP turbine shaft speed decrease until the load reaches 50% at 310 

seconds. The core inlet temperature increases prior to 310 seconds. After 310 seconds, the 

load remains at 50% of the full load. However, the inventory valve is still opening, the 

helium inventory decreases and mass flowrate in the PCU decreases continuously. The HP 

turbine shaft speed and LP turbine shaft speed increase and the core inlet temperature 

decreases. At about 1290 seconds, the inventory valve closes. The plant reaches a new 

steady state – 50% partial load operation.  

      At 50% partial load operation, the bypass valve is “feathered” – with bypass valve mass 

flowrate about 0.8 kg/s. The LP compressor mass and power turbine mass flowrate are about 

63.4 kg/s and 62.6 kg/s, respectively. The core inlet temperature is 520.8°C and the core 

outlet temperature is 902.2°C, a little higher than the nominal value of 900°C. The pressure 

in the high-pressure zone is 4.0MPa, and the pressure in the low-pressure zone is 1.32MPa. 

The pressure ratio is very close to the original pressure ratio. At the new steady state, the HP 

turbine shaft speed and LP turbine shaft speed are 7998 rpm and 8046 rpm, respectively. 

The fission power is 124.0MWth. The cycle efficiency is even slightly higher than that of 

full power operation. At 50% load, the mass flow reduces to approximately half of the 

nominal value through the IHX and recuperator, while the volume and heat transfer area 

remain fixed. The IHX and recuperator effectiveness increase from 95% to 95.6%. The 

increasing effectiveness of heat exchangers at partial power agrees with the literature[1]. 

This contributes in part to the slightly increasing cycle efficiency at partial load operation.  

      The significant benefit of using inventory control is that it allows the cycle to operate at 

partial load with temperatures roughly the same as the nominal values.  

 

 

 

 

 

 173



40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

110.0%

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (sec)

N
or

m
al

iz
ed

 p
ow

er

Fission pow er

Heat removed from core

Electric load

 
Figure 6.40 Electric load and reactor fission power in a load ramp from 100% to 50% at a 

rate of 10%/min, both bypass control and inventory control are used 
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Figure 6.41 Turbine-generator shaft speed in a load ramp from 100% to 50% at a rate of 

10%/min, both bypass valve control and inventory control are used 
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Figure 6.42  HP turbine shaft speed and LP turbine shaft speed in a load ramp from 100% to 

50% at a rate of 10%/min, both bypass valve control and inventory control are used 
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Figure 6.43  Bypass valve and inventory valve mass flowrate in a load ramp from 100% to 

50% at a rate of 10%/min, both bypass valve control and inventory control are used 
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Figure 6.44  Power turbine and LP compressor mass flowrate in a load ramp from 100% to 

50% at a rate of 10%/min, both bypass valve control and inventory control are used 
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Figure 6.45  Primary system mass flowrate in a load ramp from 100% to 50% at a rate of 

10%/min, both bypass valve control and inventory control are used 
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Figure 6.46  Helium inventory in the PCU in a load ramp from 100% to 50% at a rate of 

10%/min, both bypass valve control and inventory control are used 
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Figure 6.47  Core outlet/inlet temperature and fuel average temperature in a load ramp from 

100% to 50% at a rate of 10%/min, both bypass control and inventory control are used 
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Figure 6.48  Pressures of compressors in a load ramp from 100% to 50% at a rate of 

10%/min, both bypass valve control and inventory control are used 
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Figure 6.49  Turbine temperatures in a load ramp from 100% to 50% at a rate of 10%/min, 

both bypass valve control and inventory valve control are used 
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Figure 6.50  Compressor temperatures in a load ramp from 100% to 50% at a rate of 

10%/min, both bypass valve control and inventory control are used 

 

 

6.3.3 Grid separation 

 

In the event of grid separation, the load out of the plant suddenly disappears. The only load 

on the generator is the power provided for the circulator and the station load, roughly about 

10MWe. As the grid load suddenly vanishes, the excess power produced by the power 

turbine speeds up the turbine-generator shaft. Usually, when the shaft speed is over 120% of 

the nominal value, it can cause turbine blade damage due to the high centrifugal force. For 

over-speed protection, one method is quickly connecting the generator to an extra power 

consumption component, a water cooled resistor heater. The resistor provides a load ramp 

with 80% of full load at the grid separation, then gradually decreasing to 10% of full load in 

10 seconds. During the 10 seconds, the resistor generates about 600 MJ heat, which can 

vaporize 232 kg water with initial temperature 20°C, or can increase about 2400 kg water 

temperature from 20°C to 80°C.  
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      Figures 6.51 to 6.54 show the simulation results with centrifugal compressor map. The 

turbine-generator shaft speed peaks at 102.7% (3696rpm) at 21 seconds, much less than the 

limitation. The HP turbine shaft speed and LP turbine shaft speed drop to 3889rpm and 

2826rpm, respectively. The fission power decreases to about 18% of full power level after 

320 seconds. The bypass valve mass flowrate is large, 38 kg/s. 
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Figure 6.51 Total load and reactor fission power in a simulated grid separation, bypass valve 

control is used and centrifugal compressor maps are used 
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Figure 6.52 Bypass valve mass flowrate in a simulated grid separation, bypass valve control 

is used and centrifugal compressor maps are used 
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Figure 6.53 Turbine-generator shaft speed in a simulated grid separation, bypass valve 

control is used and centrifugal compressor maps are used – short time period 
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Figure 6.54 HP turbine shaft speed and LP turbine shaft speed in a simulated grid separation, 

bypass valve control is used and centrifugal compressor maps are used.  

 

 

 

6.4 Conclusion 
 

6.4.1 Cycle design results 

 

For the power conversion system, we will use an indirect cycle, in which an IHX is used to 

separate the nuclear side and the PCU. For this configuration the components in the PCU are 

free of contamination and thus are easier to for maintain. A three-shaft arrangement is 

utilized and the shafts are in horizontal layout. Two sets of turbines will be used as the 

power turbine so that each has lower maximum power output. The selection makes the 

power output of the turbines close to the practical power output of manufacturers’ current 

turbine technology and thus the R&D cost is low. The three-shaft arrangement also makes 

the HP turbine shaft and the LP turbine shaft float, improving the operational stability. For 

the horizontal layout, the vibration problem is less serious than that of vertical layout and the 

selection of magnetic bearings is relatively easier than that for vertical layout. Considering 
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the goal of high efficiency, all the turbines and compressors are axial type. The core outlet 

and inlet temperatures are chosen as 900°C/520°C, respectively. A separate cooling heat 

exchanger is used to provide a cooling stream for cooling the RPV and to ensure the RPV 

temperature is 280°C during normal operating. Three intercoolers are used to cool the 

compressor inlet helium. The intercoolers and precooler are helium/water heat exchangers, 

for which 27°C cooling water is provided by a cooling tower. A recuperator is used to 

recover the energy exhausted from the power turbine. The recuperator will be the plate-fin 

configuration (PFHX, Ingersoll Rand Energy System). There are two options for the IHX – 

the printed circuit configuration (PCHX, Heatric) and the plate-fin configuration (PFHX, 

Ingersoll Rand Energy System). The printed circuit configuration is large and costly, but 

presents less development risk at the present time. The plate-fin configuration is promising 

in terms of the volume and cost.  

      As calculated in Chapter 4, the core pressure loss is about 1%. For the IHX, using the 

printed circuit configuration with 95% effectiveness, the primary side pressure loss is 1.77% 

and 2% on the secondary side. If using the plate-fin configuration, the pressure losses are 

0.5% and 1.4% on the primary side and secondary side, respectively. For the recuperator, the 

low-pressure side pressure loss is 0.8% and high-pressure side pressure loss is 0.33%. The 

helium side pressure loss of the precooler is 0.8%. For the intercooler between the LP 

compressor and the MP compressor #1, the helium side pressure loss is 0.5%. For the other 

two intercoolers, the helium side pressure losses are both 0.3% since they are in a relative 

high pressure position. The polytropic efficiency for all the turbines is 92%, and 90% for all 

the compressors. The circulator isentropic efficiency is 90%. The efficiency of the motor 

driving the circulator is 98%. The generator efficiency is 98.5%. The mechanical loss for the 

shaft is assumed to be 1%. 

      When speaking of the cooled turbine, we mean using a substantial quantity of coolant to 

cool the nozzle and rotor blades themselves. In the MPBR, the highest working fluid 

temperature is lower than 880°C, thus no cooling of nozzle and rotor blades is required. It is, 

however, the practice to pass a quantity of cooling working fluid over the turbine disc and 

blade roots. The amount of cool working fluid is about 1 ~ 2% of the total mass flowrate. In 

this work, we assume that 1.5% extra helium is bled from the HP compressor to cool the HP 

turbine disc and blade roots. For the LP turbine and power turbine, 1.5% extra helium from 
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the MP compressor #1 is individually passed to each turbine. Though using labyrinth seals 

for the turbomachines, there is still leakage. We assume 1% extra helium leakage from the 

HP compressor and MP compressor #1, respectively. For the IHX vessel, insulation is used 

to help cool the pressure boundary temperature to 150°C. In normal conditions, no cooling 

helium is required. However, if there is a failure in the insulation material, cold helium is 

necessary to cool the IHX pressure boundary. For the casing of the turbines, a separate water 

cooling system might be the solution. The energy loss caused by the turbine casing cooling 

needs further study. For conservatism, we assume another 1.5% of extra helium is diverted 

from the HP compressor for cooling purposes. As a consequence, 4% extra helium mass 

flowrate is bled from the HP compressor and MP compressor#2, respectively, because of 

cooling and leakage. 

      If using a printed circuit heat exchanger as the IHX, the gross electric power output is 

131.4MW. Cycle pressure ratio is 2.92. Taking into account losses, the net electric power 

output is 121.3MW. The plant net efficiency is 48.5%. If using a plate-fin heat exchanger as 

the IHX, the gross electric power output is 130.61MW. Cycle pressure ratio is 2.85. The net 

electric power output is 123.5MW. The plant net efficiency is 49.4%. The salient parameters 

are summarized in Table 6.2. The cycle parameters are shown in Figure 6.55 and 6.56. 

      Currently, according to the information from ESKOM, the pebble bed reactor designer 

in South Africa, after considering all the losses, the PBMR net efficiency is around 41%. 

Mainly two facts contribute to the higher efficiency of the MPBR: (1) Higher 

turbomachinery efficiency; in the MPBR, the turbine polytropic efficiency is 92% (92.5% 

isentropic efficiency) and the compressor polytropic efficiency is 90% (89.5% isentropic 

efficiency) while the turbine isentropic efficiency is 89% and the compressor isentropic 

efficiency is 89% in the PBMR[2]. (2) More intercooling stages; three intercooling stages is 

used in the MPBR while one is used in the PBMR 

      For the MPBR, after considering the losses caused by the turbine casing cooling, the 

plant net efficiency is believed to be around 45%.  
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  Table 6.2 MPBR design parameters 
 

Thermal power 250 MWth 
Core outlet/inlet temperature 900/520 °C 
Pressure ratio of PCU 2.92 2.86 
Helium mass flowrate 
(primary/secondary) 

126.7/126.7 kg/s 

System maximum pressure 8.0 MPa 
Core pressure drop 1% 
IHX Printed circuit HX 

Effectiveness: 95% 
Pressure drop:  
          1.77% (hot side) 
          2%  (cold side) 

Plate-fin HX 
Effectiveness: 95% 
Pressure drop: 
          0.5% (hot side) 
          1.4% (Cold side) 

Recuperator (Plate-fin HX) Effectiveness: 95% 
Pressure drop:  
                        0.8% (low-pressure side) 
                        0.33%(high-pressure side) 

Precooler Helium side pressure drop: 0.8% 
Intercooler #1 Helium side pressure drop: 0.5% 
Intercooler #2, #3 Helium side pressure drop: 0.3% 
Turbine polytropic efficiency 92% 
Compressor polytropic efficiency 90% 
Generator efficiency 98.5% 
Circulator isentropic efficiency 90% 
Circulator motor efficiency 98% 
Turbine shaft mechanical loss 1% 
HP compressor and MP compressor #1 
extra leakage rate 

1% 
 

HP compressor and MP compressor #1 
extra cooling rate 

3% 

Losses  
       Circulator power 6.58MWe 3.57MWe 
       Other station load 2.5 MWe 
       Switch-yard loss 0.6% 
       System radiation loss 0.5 MWth 
Gross power output 131.4 MWe 130.6 MWe 
Net electric power (without considering 
the energy loss for turbine casing 
cooling) 

121. 3 MWe 
 
 

123.5 MWe 

Net plant efficiency (without 
considering the energy loss for turbine 
casing cooling) 

48.5% 49.4% 
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 Figure 6.55   Cycle parameters using printed circuit heat exchanger as IHX 

 

 
 Figure 6.56   Cycle parameters using plate-fin heat exchanger as IHX 
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6.4.2 Control system results 

 

The turbines are designed with 50% reaction. Turbine and compressor sets are on individual 

shafts. For the shaft, the axial force caused by the turbine is balanced by that of compressors, 

thus the axial direction net force on the shaft is zero. 

      The plant transient analyses show that, for normal operating transients, the pebble bed 

reactor coupled with an indirect, three-shaft arrangement power conversion system is stable 

and controllable. It meets the load following requirement. Bypass valve control is used for 

fast response while inventory control is used for slow, partial load operation. For the three-

shaft arrangement, the bypass valve control does not decrease the cycle efficiency greatly. 

However, solely using bypass valve control for partial load operation increases the core inlet 

temperature. This happens using either a direct, single-shaft arrangement cycle or an 

indirect, multi-shaft arrangement cycle. Inventory control allows the partial load operation 

with high efficiency and without thermal stress on the components.  

 

6.5 Summary 
 

This chapter provides steady state parametric analyses for cycle design. The plant nominal 

parameters and performances are given for an indirect, intercooled and recuperated cycle 

design. Even considering 4% extra helium mass flowrate for leakage and cooling purposes 

from the HP compressor and MP compressor#1, the plant net efficiency can reach 48%. The 

dynamic model has been verified with Flownet. Four load transient scenarios have been 

simulated. For plant normal operating load transients, the plant incorporates the pebble bed 

reactor and the indirect, three-shaft arrangement power conversion system is stable and 

controllable.  

 

References: 

[1] P. P. Walsh, P. Fletcher, “Gas turbine performance”, Blackwell Science, 1998.  

[2] IAEA, “Current status and future development of modular high temperature gas cooled 

reactor technology”, IAEA-TECDOC-1198, 

http://www.iaea.or.at/inis/aws/htgr/abstracts/abst_gcr_review.html. 
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7. Summary and discussion 
 

7.1 Summary of conclusions 
 

For the power conversion system of the MPBR, an indirect recuperated and intercooled 

Brayton cycle is utilized. With regard to the turbomachinery layout, a horizontal three-shaft 

arrangement has been developed. There are two options for the IHX configuration – the 

printed circuit heat exchanger of Heatric and the plate-fin heat exchanger of Ingersoll Rand 

Energy System. The printed circuit heat exchanger is large, heavy and costly, but with 

extensive operating experience in high temperature and high pressure environments. The 

plate-fin heat exchanger is relatively small, light and cheap, and with low pressure drop. For 

the plate-fin configuration, a thermal parametric analysis has been conducted. The turbines 

and compressors are all axial type due to their higher efficiency. For the axial compressor, 

its working range is narrow compared with the centrifugal type. However, the three-shaft 

arrangement provides improved operational stability. A recuperator and intercoolers are 

used to improve the cycle efficiency. For the recuperator, a plate-fin heat exchanger is used. 

Its thermal design has also been performed. From the heat exchanger thermal analysis, we 

can see that the heat exchanger volume, and the cost are roughly doubled when the 

effectiveness increases from 90% to 95%. Based on the cycle parametric analysis using the 

steady state model, the core outlet/inlet temperatures are chosen as 900°C and 520°C, 

respectively. For the indirect cycle design, the pressure losses in the primary system can 

significantly affect the consumed power of the circulator, and thus the plant net efficiency. 

In terms of the plant efficiency, using a plate-fin heat exchanger as the IHX offers higher 

plant net efficiency.  

      For meeting ASME code section III, RPV cooling is deployed. A separate small IHX is 

used to provide cooling helium in the primary system. In practice, on the PCU side helium is 

bled from the compressor outlet for cooling purposes, i.e., cooling the turbine disc and blade 

roots. From the parametric analysis, the bleeding and the leakage do not greatly affect the 

cycle efficiency. 

      A cooling tower is used to provide 27°C water for cooling the compressor inlet helium in 

the precooler and intercoolers. The compressor inlet helium is cooled to 30°C. This design 
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can be implemented in districts where rivers, lakes and the sea are not available. Based on 

the feasibility study conducted in collaboration with Concepts-NREC, MA, for the key 

components such as turbomahines, IHX and recuperator, and the assumption of 4% extra 

helium massflowrate bled from the HP compressor and MP compressor#1, the plant net 

efficiency is over 48%. Thus, it fulfills the design objective -- 45% plant net efficiency.  

      For investigating the controllability and operational stability of the plant, a dynamic 

model, MPBRSim, has been developed. The dynamic model incorporates the reactor core 

and PCU to predict their interaction. The model includes the components of the plant: 

reactor, heat exchangers, turbomachines, valves, pipes and controllers. Verification has been 

conducted against Flownet simulation results. Both codes exhibit the same trend for the 

response to a load transient.  

      Two control methods, bypass valve control and inventory control, are available for the 

gas turbine cycle. For normal operating load transients, solely using the bypass valve can 

maintain the power turbine shaft speed within its limitations, and will not degrade the cycle 

efficiency greatly since the two other shafts are floating. However, it increases the 

recuperator low-pressure side inlet temperature and the core inlet temperature. For long time 

partial load operation, the increased temperatures are not allowed. Inventory control is used 

to reduce the cycle mass flowrate and to make the bypass valve “feathered”. During partial 

load operation, using inventory control, the temperatures around the cycle are close to the 

nominal values and the cycle efficiency remains high.  

      The control strategy and the control objective are defined for the MPBR. By using the 

designed control scheme, the simulation results show that the control system meets the load 

following requirement and the automatic operation within the control band. The control 

system enables the plant to operate with 10% step load change and 10%/min load decrease 

ramp as well as 5%/min load increase ramp in the power range of 100% ~ 50%. In the grid 

separation event, a turbomachine braking method is proposed to prevent the turbine-

generator speed from exceeding 120%.  

      An array of load transients has been simulated using MPBRSim, both for an axial 

compressor map and a centrifugal compressor map. The simulation results demonstrate the 

controllability and operational stability for the indirect, three-shaft arrangement cycle 

design.  
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7.2 Discussion and recommendation 
 

The plant efficiency prediction has not taken into account the loss caused byturbine casing 

cooling. This cooling can be implemented by a separate water cooling system or a separate 

helium cooling system. The cooling helium also can be helium diverted from the HP 

compressor outlet. The cooling scheme is to be determined in further investigations. A 1% 

leakage rate is assumed for both the HP compressor and MP compressor #1. More accurate 

estimation of leakage rate will require an investigation of sealing technology. For the 

indirect cycle design, the IHX is the key component. Incoloy 800HT is expected to be the 

IHX material. It requires that the maximum differential pressure between the primary and 

the secondary sides will not exceed 1.0 MPa at the temperature condition of the MPBR. This 

requirement can be met during normal operation. However, in extreme transients such as 

when the secondary side has been depressurized while the primary side remains hot and at 

pressure, the stress-time envelope must be limited to prevent excessive deformation. 

Removal of this restriction will require the qualification of more advanced material under 

ASME code section III.  

      In the dynamic model, the axial compressor map and centrifugal map are both used. 

Because of the high steepness of the axial compressor speed lines in the map, the calculation 

time step size needs to be very small to obtain the convergent results. This is a drawback for 

real-time simulation. A procedure should be added to calculate the choking flow condition 

which can occur in the compressors and turbines during total load rejection instantaneously. 

For future research, improving the solution algorithm is one way to implement real-time 

simulation. In the core model, the calculation of temperature reactivity feedback is based on 

the average core temperature. This mechanism is considered sufficient for reactor power 

control. For more detailed core analysis, the uneven reactivity distribution caused by 

temperature profile change can be taken into considered. 

       Currently, PI controllers are used. It can basically satisfy the plant control requirements. 

For obtaining superior control performance, a more sophisticated control system design can 

be performed based on the calculated results of transients using the dynamic model. For the 

gas turbine nuclear power plant, startup and shutdown procedures are of interest for cycle 
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design. Optimizing the volume and the number of inventory vessels is required. These tasks 

are left for future research.  
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Appendix A   Concepts-NREC Heat Exchanger Design 

 

Initial Intermediate Heat Exchanger (IHX) thermal design has been conducted by Concepts-

NREC for two configurations – Printed Circuit Heat Exchanger (PCHE) and Plate Fin Heat 

Exchanger (PFHE). Additional IHX and recuperator designs with the PCHE configuration 

for parametric variations have been performed. The IHX designs assumed using Incoloy 800 

as the material of construction while the recuperators were constructed of 347 stainless steel. 

      The PCHE design calculations were based on the following standard plate and flow-

passage detailed dimensions: 

 Channel diameter = 2 mm 

 Plate thickness = 1.6 mm 

 Center-to-center channel spacing = 2.44 mm 

The PFHX design calculations used the detailed plate and fin geometry: 

 Cold-side fin layers = 1 

 Hot-side fin layers = 2 

 Plate spacing = 0.065 in 

 Parting plate thickness = 0.015 in 

 Fin material thickness = 0.003 in 

 Fin spacing = 45 fins/inch 

     The initial design conditions for the IHX are listed in Table A.1. Tables A.2 and A.3 list 

the IHX initial parametric results for the PCHX and PFHX, respectively. Table A.4 lists the 

initial IHX nominal results. The designs and package approaches for the two types are 

illustrated in Figures A.1 and A.2 for the PCHE and Figures A.3 and A.4 for the PFHX. 

      The additional parametric design calculation conditions and results are listed in Tables 

A.5 to A.7. Note that in Table A.7, the plate-fin type results are obtained by scaling the 

initial IHX results.  

 

 

 

 

 

 192



Table A.1 - Initial IHX Design Conditions 
 

 Primary 
(Hot Side) 

Loop 

Secondary 
(Cold Side) 

Loop 
Fluid Helium Helium 
Flow Rate, kg. sec 
(lbm/sec) 

119 (262) 119 (262) 

Inlet Temperature, C (F) 850 (1562) 386 (726) 
Outlet Temperature, C (F) 432 (810) 803 (1478) 
Inlet Pressure, MPa (psia) 7.56 (1097) 7.85 (1139) 

 
 Effectiveness    90% 
 Maximum Primary Pressure Loss  2.0% 
 Maximum Secondary Pressure Loss 2.0% 
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Table A.2 - Initial Parametric Results for PCHE IHX 
 
Flow Rate, mc, lbm/sec 262 262 262 262 262 262 262 262 262

Inlet Pressure, Pc,in, psia 1139 1139 1139 1139 1139 1139 1139 1139 1139

Inlet Temperature, Tc,in, deg F 726.5 726.5 726.5 726.5 726.5 726.5 726.5 726.5 726.5

Outlet Temperature, Tc,out, deg F 1478.0 1478.0 1478.0 1478.0 1478.0 1478.0 1478.0 1478.0 1478.0

Flow Rate, mh, lbm/sec 262 262 262 262 262 262 262 262 262

Inlet Pressure, Ph,in, psia 1097 1097 1097 1097 1097 1097 1097 1097 1097

Inlet Temperature, Th,in, deg F 1562.0 1562.0 1562.0 1562.0 1562.0 1562.0 1562.0 1562.0 1562.0

Outlet Temperature, Th,out, deg F 810.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0

Core Height, in 566.40 566.40 566.40 566.40 708.00 708.00 708.00 708.00 708.48

Core Width, in 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60 23.60

Core Length, in 17.46 17.46 17.46 17.46 15.83 15.83 15.83 15.83 15.83

Inlet Header w, in 10.00 15.00 20.00 25.00 10.00 15.00 20.00 25.00 10.00

Outlet Header w, in 10.00 15.00 20.00 25.00 10.00 15.00 20.00 25.00 10.00
HT Area Ac, ft^2 18292 18292 18292 18292 20731 20731 20731 20731 20745

HT Area Ah, ft^2 18292 18292 18292 18292 20731 20731 20731 20731 20745

Plate Spacing, bc, in 0.03900 0.03900 0.03900 0.03900 0.03900 0.03900 0.03900 0.03900 0.03900

Channel Dia, dc, in 0.07900 0.07900 0.07900 0.07900 0.07900 0.07900 0.07900 0.07900 0.07900

Channel Spacing, Sp,c, in 0.09600 0.09600 0.09600 0.09600 0.09600 0.09600 0.09600 0.09600 0.09600

Free Flow/Face Area, σc 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402

Surface/Volume, βc, ft^2/ft^3 433.4 433.4 433.4 433.4 433.4 433.4 433.4 433.4 433.4

Hydraulic Radius, rH,c, ft 9.28E-04 9.28E-04 9.28E-04 9.28E-04 9.28E-04 9.28E-04 9.28E-04 9.28E-04 9.28E-04

Plate Spacing, bh, in 0.03900 0.03900 0.03900 0.03900 0.03900 0.03900 0.03900 0.03900 0.03900

Channel Dia, dh, in 0.07900 0.07900 0.07900 0.07900 0.07900 0.07900 0.07900 0.07900 0.07900

Channel Spacing, Sp,h, in 0.09600 0.09600 0.09600 0.09600 0.09600 0.09600 0.09600 0.09600 0.09600

Free Flow/Face Area, σh 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402 0.402

Surface/Volume, βh, ft^2/ft^3 433.4 433.4 433.4 433.4 433.4 433.4 433.4 433.4 433.4

Hydraulic Radius, rH,h, ft 9.28E-04 9.28E-04 9.28E-04 9.28E-04 9.28E-04 9.28E-04 9.28E-04 9.28E-04 9.28E-04

UA, Btu/hr F 10540800 10540800 10540800 10540800 10539000 10539000 10539000 10539000 10544400

Q, kBtu/hr 880560 880560 880560 880560 880500 880500 880500 880500 880560

Effectiveness ε, % 90.002 90.002 90.002 90.002 90.000 90.000 90.000 90.000 90.003
Reynolds Number, Rec 2975.0 2975.0 2975.0 2975.0 2380.0 2380.0 2380.0 2380.0 2378.0

HT Coefficient, hc, Btu/hr ft^2 F 1347.0 1347.0 1347.0 1347.0 1164.0 1164.0 1164.0 1164.0 1164.0

Conductance, (ηohA)c, Btu/hr F 24648000 24648000 24648000 24648000 24132000 24132000 24132000 24132000 24138000

Cold ∆Pc, % 3.072 2.234 1.918 1.765 2.004 1.443 1.232 1.133 2.002

Inlet Hdr ∆P, % 0.588 0.284 0.169 0.113 0.394 0.190 0.113 0.076 0.393

Outlet Hdr ∆P, % 1.031 0.497 0.296 0.198 0.690 0.333 0.198 0.137 0.689
Reynolds Number, Reh 2867.0 2867.0 2867.0 2867.0 2293.0 2293.0 2293.0 2293.0 2292.0

HT Coefficient, hh, Btu/hr ft^2 F 1364.0 1364.0 1364.0 1364.0 1179.0 1179.0 1179.0 1179.0 1179.0

Conductance, (ηohA)h, Btu/hr F 24960000 24960000 24960000 24960000 24447000 24447000 24447000 24447000 24451200

Hot ∆Ph, % 2.638 3.118 3.598 4.078 1.733 2.068 2.403 2.739 1.731

No of Passage Pairs 4496 4496 4496 4496 5620 5620 5620 5620 5624
HX Weight, lbm 79512 93984 108456 122952 93480 111570 129690 147780 93564

Note: "c" = Cold Side,  "h" = Hot Side  
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Table A.3 - Initial Parametric Results for PFHE IHX 
 
 
Flow Rate, mc, lbm/sec 262 262 262 262 262 262 262 262 262 262 262 262 262 262 262

Inlet Pressure, Pc,in, psia 1139 1139 1139 1139 1139 1139 1139 1139 1139 1139 1139 1139 1139 1139 1139

Inlet Temperature, Tc,in, deg F 726.5 726.5 726.5 726.5 726.5 726.5 726.5 726.5 726.5 726.5 726.5 726.5 726.5 726.5 726.5

Outlet Temperature, Tc,out, deg F 1478.0 1478.0 1479.0 1478.0 1478.0 1479.0 1478.0 1478.0 1478.0 1478.0 1479.0 1478.0 1478.0 1478.0 1478.0

Flow Rate, mh, lbm/sec 262 262 262 262 262 262 262 262 262 262 262 262 262 262 262

Inlet Pressure, Ph,in, psia 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097 1097

Inlet Temperature, Th,in, deg F 1562.0 1562.0 1562.0 1562.0 1562.0 1562.0 1562.0 1562.0 1562.0 1562.0 1562.0 1562.0 1562.0 1562.0 1562.0

Outlet Temperature, Th,out, deg F 810.1 810.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0 810.0 809.9 810.0 810.0 810.0 810.0

Core Height, in 630.00 630.00 630.00 630.00 630.00 720.00 720.00 720.00 720.00 720.00 810.00 810.00 810.00 810.00 810.00

Core Width, in 10.00 15.00 20.00 25.00 30.00 10.00 15.00 20.00 25.00 30.00 10.00 15.00 20.00 25.00 30.00

Core Length, in 25.70 19.80 16.50 14.32 12.78 23.60 18.19 15.15 13.17 11.76 21.90 16.87 14.07 12.24 10.93

Inlet Header w, in 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Outlet Header w, in 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00
HT Area Ac, ft^2 38646 44676 49626 53838 57654 40572 46890 52074 56592 60642 42354 48924 54414 59166 63414

HT Area Ah, ft^2 78102 90252 100296 108792 116514 81972 94770 105246 114354 122544 85572 98874 109962 119574 128124

Plate Spacing, bc, in 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065

Fin Spacing, FPIc, 1/in 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0

Fin Thickness, δc, in 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300

Free Flow/Face Area, σc 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825

Surface/Volume, βc, ft^2/ft^3 1428.0 1428.0 1428.0 1428.0 1428.0 1428.0 1428.0 1428.0 1428.0 1428.0 1428.0 1428.0 1428.0 1428.0 1428.0

Hydraulic Radius, rH,c, ft 5.78E-04 5.78E-04 5.78E-04 5.78E-04 5.78E-04 5.78E-04 5.78E-04 5.78E-04 5.78E-04 5.78E-04 5.78E-04 5.78E-04 5.78E-04 5.78E-04 5.78E-04

Plate Spacing, bh, in 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130

Fin Spacing, FPIh, 1/in 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0

Fin Thickness, δh, in 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300 0.00300

Free Flow/Face Area, σh 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.825

Surface/Volume, βh, ft^2/ft^3 1443.0 1443.0 1443.0 1443.0 1443.0 1443.0 1443.0 1443.0 1443.0 1443.0 1443.0 1443.0 1443.0 1443.0 1443.0

Hydraulic Radius, rH,h, ft 5.72E-04 5.72E-04 5.72E-04 5.72E-04 5.72E-04 5.72E-04 5.72E-04 5.72E-04 5.72E-04 5.72E-04 5.72E-04 5.72E-04 5.72E-04 5.72E-04 5.72E-04

UA, Btu/hr F 10535400 10540800 10549800 10540800 10546200 10548000 10544400 10539000 10540800 10546200 10560600 10540800 10540800 10544400 10542600

Q, kBtu/hr 880560 880560 880740 880560 880560 880560 880560 880560 880560 880560 880740 880560 880560 880560 880560

Effectiveness ε, % 89.996 90.001 90.009 90.001 90.005 90.007 90.005 90.000 90.001 90.005 90.018 90.001 90.002 90.004 90.003
Reynolds Number, Rec 2072 1382 1036 829 691 1813 1209 907 725 604 1612 1075 806 645 537

HT Coefficient, hc, Btu/hr ft^2 F 1708 1310 1086 939 833 1565 1201 995 860 764 1449 1112 921 796 707

Fin Eff ηf,c 0.327 0.371 0.405 0.433 0.457 0.341 0.387 0.422 0.450 0.475 0.354 0.401 0.437 0.466 0.490

Surf Eff ηo,c 0.475 0.510 0.537 0.558 0.577 0.486 0.522 0.550 0.572 0.591 0.496 0.533 0.561 0.584 0.603

Conductance, (ηohA)c, Btu/hr F 31392000 29862000 28926000 28224000 27720000 30888000 29412000 28494000 27846000 27342000 30474000 29016000 28134000 27522000 27036000

Cold ∆Pc, % 5.194 2.347 1.522 1.231 1.139 3.858 1.756 1.149 0.940 0.877 2.970 1.359 0.898 0.742 0.697

Inlet Hdr ∆P, % 0.122 0.184 0.245 0.306 0.367 0.096 0.144 0.193 0.241 0.289 0.078 0.117 0.156 0.195 0.234

Outlet Hdr ∆P, % 0.117 0.176 0.234 0.293 0.351 0.092 0.138 0.184 0.230 0.276 0.075 0.112 0.149 0.186 0.224
Reynolds Number, Reh 988 659 494 395 329 865 576 432 346 288 769 512 384 307 256

HT Coefficient, hh, Btu/hr ft^2 F 1104 847 702 607 539 1012 776 643 556 494 937 719 596 515 457

Fin Eff ηf,h 0.204 0.233 0.256 0.275 0.292 0.213 0.243 0.267 0.287 0.304 0.222 0.253 0.278 0.298 0.316

Surf Eff ηo,h 0.291 0.317 0.337 0.354 0.369 0.299 0.326 0.347 0.365 0.380 0.307 0.334 0.356 0.375 0.391

Conductance, (ηohA)h, Btu/hr F 25110000 24228000 23742000 23382000 23166000 24822000 23994000 23508000 23202000 23004000 24588000 23778000 23346000 23076000 22896000

Hot ∆Ph, % 2.419 1.033 0.570 0.361 0.250 1.826 0.783 0.433 0.276 0.191 1.427 0.614 0.341 0.217 0.151

No of Passage Pairs 2800 2800 2800 2800 2800 3200 3200 3200 3200 3200 3600 3600 3600 3600 3600

HX Weight, lbm 17709 21762 25452 28872 32130 18936 23382 27414 31212 34830 20124 24930 29340 33498 37458

Note: "c" = Cold Side,  "h" = Hot Side
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Table A.4 - Comparison of Initial Nominal IHX Designs 
 
 PFHE Design

Model Estimates(2) Heatric Quote(3) Model Estimates(2)

Number of Modules (1) 6 6 6 x 3 = 18 
Number of Vessels 6 6 6 
Nominal Core Dimensions W x L x H 23.6 x 26.0 x 39.4 in 23.5 x 30.2 x 87.4 in 15 x 17 x 45 in

600 x 660 x 3000 mm 596 x 766 x 2220 mm 381 x 432 x 1143 mm
Module Core Volume 1.19 cu m 1.01 cu m 0.188 cu m 

42.0 cu ft 35.9 cu ft 6.64 cu ft 
Total IHX Core Volume 6 x 1.19 = 7.14 cu m 6 x 1.01 = 6.08 cu m 18 x 0.188 = 3.39 cu m

252 cu ft 215 cu ft 119 cu ft 
Module Weight (4) 15600 lbm 15760 lbm 1390 lbm 

7080 kg 7150 kg 630 kg 
Total IHX Weight (4) 93600 lbm 94600 lbm 25000 lbm 

42500 kg 42900 kg 11300 kg 
Nominal Vessel Dimensions (Diam x Ht) 1200 x 3000 mm 1300 x 2220 mm 1730 x 1140 mm

3.9 x 9.8 ft 4.3 x 7.3 ft 5.7 x 3.8 ft 
Estimated Cost (5) n/a $5,000,000 n/a 

NOTES: 

(1.) A 'module' is defined as follows: 

(2.) Estimates based on our semi-empirical design models
(3.) Design estimates provided by Heatric  
(4.) Heatric weight estimates include manifolds.
      Our estimates are for the core alone. 
(5.) Ballpark cost estimate provided by Heatric

PCHE Design

CORE L

W

H
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Figure A.1 – Nominal Module Dimensions for Initial Printed Circuit Heat Exchanger IHX 
Design 
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Figure A.2 - Module Packaging for Initial Printed Circuit Heat Exchanger IHX Design 
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Figure A.3 - Nominal Module Dimensions for Initial Plate Fin Heat Exchanger IHX Design 
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Figure A.4 - Module Packaging for Initial Plate Fin Heat Exchanger IHX Design 
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Table A.5 – Additional Parametric Variation of Design Conditions for IHX and Recuperator 
 
 

Effectiveness, % 90.0 92.5 95.0 95.0 95.0 95.0
Allowable Hot-Side Pressure Loss, % 2.0 2.0 2.0 0.8 1.4 2.0
Allowable Cold-Side Pressure Loss, % 2.0 2.0 2.0 0.8 1.4 2.0
Hot Side
Flow Rate, kg/sec (lbm/sec) 109 (240) 109 (240) 109 (240) 109 (240) 109 (240) 109 (240)
Inlet Temperature, C (F) 850 (1562) 850 (1562) 850 (1562) 374 (705) 374 (705) 374 (705)
Inlet Pressure, MPa (psia) 7.64 (1109) 7.64 (1109) 7.64 (1109) 1.90 (276) 1.90 (276) 1.90 (276)
Cold Side
Flow Rate, kg/sec (lbm/sec) 109 (240) 109 (240) 109 (240) 106 (233) 106 (233) 106 (233)
Inlet Temperature, C (F) 350 (662) 364 (686) 376 (709) 104 (219) 104 (219) 104 (219)
Inlet Pressure, MPa (psia) 7.90 (1146) 7.90 (1146) 7.90 (1146) 7.99 (1160) 7.99 (1160) 7.99 (1160)

IHX Recuperator
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Table A.6 - PCHE IHX and Recuperator Design Results for Parametric Variations in Design 
Conditions 
 

90% 92.50% 95% 0.80% 1.40% 2.00%
Flow Rate, mc, lbm/sec 240 240 240 233 233 233

Inlet Pressure, Pc,in, psia 1146 1146 1146 1160 1160 1160

Inlet Temperature, Tc,in, deg F 662.0 686.3 709.4 219.4 219.4 219.4

Outlet Temperature, Tc,out, deg F 1472.0 1496.0 1519.0 680.6 680.6 680.6

Flow Rate, mh, lbm/sec 240 240 240 240 240 240

Inlet Pressure, Ph,in, psia 1109 1109 1109 276 276 276

Inlet Temperature, Th,in, deg F 1562.0 1562.0 1562.0 704.8 704.8 704.8

Outlet Temperature, Th,out, deg F 752.0 752.0 751.9 257.1 257.1 257.1

Core Height, in 655.00 712.00 816.00 3242.00 2412.00 2000.00

Core Width, in 23.60 23.60 23.60 23.62 23.62 23.62

Core Length, in 15.83 20.90 30.40 15.51 17.33 18.64

Inlet Header w, in 9.50 9.50 9.50 5.00 5.00 5.00

Outlet Header w, in 9.50 9.50 9.50 5.00 5.00 5.00
HT Area Ac, ft^2 19180 27530 45880 93090 77380 69020

HT Area Ah, ft^2 19180 27530 45880 93090 77380 69020

Plate Spacing, bc, in 0.03900 0.03900 0.03900 0.03900 0.03900 0.03900

Channel Dia, dc, in 0.07900 0.07900 0.07900 0.07900 0.07900 0.07900

Channel Spacing, Sp,c, in 0.09600 0.09600 0.09600 0.09600 0.09600 0.09600

Free Flow/Face Area, σc 0.402 0.402 0.402 0.402 0.402 0.402

Surface/Volume, βc, ft^2/ft^3 433.4 433.4 433.4 433.4 433.4 433.4

Hydraulic Radius, rH,c, ft 9.28E-04 9.28E-04 9.28E-04 9.28E-04 9.28E-04 9.28E-04

Plate Spacing, bh, in 0.03900 0.03900 0.03900 0.03900 0.03900 0.03900

Channel Dia, dh, in 0.07900 0.07900 0.07900 0.07900 0.07900 0.07900

Channel Spacing, Sp,h, in 0.09600 0.09600 0.09600 0.09600 0.09600 0.09600

Free Flow/Face Area, σh 0.402 0.402 0.402 0.402 0.402 0.402

Surface/Volume, βh, ft^2/ft^3 433.4 433.4 433.4 433.4 433.4 433.4

Hydraulic Radius, rH,h, ft 9.28E-04 9.28E-04 9.28E-04 9.28E-04 9.28E-04 9.28E-04

UA, Btu/hr F 9652000 13230000 20430000 15760000 15740000 15760000

Q, kBtu/hr 868600 868600 868700 480100 480100 480100

Effectiveness ε, % 90.0 92.5 95.0 95.0 95.0 95.0
Reynolds Number, Rec 2394.0 2178.0 1881.0 673.1 903.4 1089.0

HT Coefficient, hc, Btu/hr ft^2 F 1150.0 1093.0 1003.0 349.3 424.0 479.2

Conductance, (ηohA)c, Btu/hr F 22050000 30080000 46040000 32520000 32810000 33070000

Cold ∆Pc, % 1.993 2.009 2.002 0.134 0.231 0.327

Inlet Hdr ∆P, % 0.393 0.347 0.278 0.037 0.062 0.088

Outlet Hdr ∆P, % 0.732 0.639 0.506 0.066 0.113 0.158
Reynolds Number, Reh 2299.0 2115.0 1845.0 677.8 913.0 1101.0

HT Coefficient, hh, Btu/hr ft^2 F 1166.0 1104.0 1010.0 359.0 435.2 491.9

Conductance, (ηohA)h, Btu/hr F 22370000 30400000 46360000 33420000 33680000 33950000

Hot ∆Ph, % 1.597 1.676 1.766 0.800 1.401 2.005

No of Passage Pairs 5199 5652 6477 25730 19150 15880
HX Weight, lbm 84810 110600 166400 340200 275600 241900

Note: "c" = Cold Side,  "h" = Hot Side

Intermediate Heat Exchanger Recuperator
Effectiveness Hot-Side ∆P
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Table A.7 - Summary of Additional IHX and Recuperator Design Results 
 

 
 
PRINTED CIRCUIT HX ESTIMATES 
Effectiveness, % 90 92.5 95 95 95 95
Hot-Side Pressure Loss, % 1.60 1.68 1.77 0.80 1.40 2.00
Cold-Side Pressure Loss, % 2.00 2.00 2.00 0.13 0.23 0.33
No. of Modules, N 6 6 6 30 30 30
Module Width, W, in 23.62 23.62 23.62 23.62 23.62 23.62
Module Length, L, in 34.83 39.9 49.4 25.51 27.33 28.64
Module Height, H, in 109.2 118.7 136.0 108.1 80.4 66.7
Module Width, W, mm 600 600 600 600 600 600
Module Length, L, mm 885 1013 1255 648 694 727
Module Height, H, mm 2773 3014 3454 2745 2042 1693
Est. Total HX Weight, lbm 85,658 111,706 168,064 343,602 278,356 244,319
Estimated HX Cost, US 2001 $M 4.5 5.9 8.9 2.6 2.1 1.9
PLATE-FIN HX ESTIMATES 
Approximate Total HX Weight, lbm 22,785 29,714 44,705 91,398 74,043 64,989
Approximate HX Cost, US 2001 $M 1.2 1.6 2.4 0.7 0.6 0.5

NOTES: 

(1.) A 'module' is defined as follows: 

(2.) Costs assumed proportional to weight 
(3.) Estimated costs are based on scaling Heatric quote for Incoloy 800 IHX
(4.) Costs for recuperator assume 347 SS material and unit cost ($/lbm) 1/7th Incoloy cost
(5.) Plate-fin estimates are approximate based on scaling original PFHE/PCHE weight comparisons. 

Intermediate Heat Exchanger Recuperator 
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Appendix B   Concepts-NREC Turbomachinery Design 
 

The preliminary designs for the compressors and the turbines for the MPBR cycle has been 

conducted by Concepts-NREC. For compressors, both centrifugal and axi-centrifugal types 

were investigated. For turbines, the axial type was adopted. 

      The turbomachinery design requirements are listed in Table B.1. Tables B.2 to B.4 

tabulate the centrifugal compressor designs applied to the four-shaft arrangement and three-

shaft arrangement, respectively. The Five-stage centrifugal performance is demonstrated in 

Table B.5 and Figure B.1 to B.4. The size and cost for the axi-centrifugal compressor 

designs are listed in the Table B.6 and Table B.7, respectively. Figures B.5 to B.8 show the 

characteristics of the axi-centrifugal compressor. Its meridional view is shown in Figure B.9. 

For the HP turbine and LP turbine, the size and cost are listed in Tables B.8 and B.9. Figure 

B.10 and B.11 show its characteristics. The power turbine size and cost are listed in Tables 

B.10 and B.11. Table B.12 lists the detailed geometry of the five-stage centrifugal 

compressor.  

 

Table B.1 – Turbomachinery Design Requirements 
 

Design Requirements Year 1 Year 2 Notes 
Working Fluid Helium -  

Output Power Generated 110 MW 120 MW  
Target Cycle Efficiency >40% >45 % Busbar Eff. 

Flow Rate 118.9 kg/sec 126.7 kg/sec  
Minimum Fluid Pressure 2.0 MPa 2.71 MPa  

Maximum Fluid Temperature 800.0 °C 879.4 °C  
Overall Cycle Pressure Ratio ~4.0:1 ~3.0:1  

Ancillary Requirements    
Inter-device Pipe Velocity 120 m/s -  

Life expectancy 30 – 50 years -  
 

Table B.2 – Numbers and Sizes of Centrifugal Compressors 
 

Number of 
Compressors 

Stages per 
Compressor 

Optimal 
Shaft Speed 

Casing Inner 
Diameter 

Compressor 
Casing Length 

3 6 7500 rpm 1.62 m 3.4 m 
4 5 5900 rpm 1.74 m 3.3 m 
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 Table B.3 – 3-Compressor (Centrifugal) Arrangement Costs 
 

  
Recurring 

Cost ($US) 

Development/ 
Non-recurring 

Cost ($US) 

 
 

Total ($US) 
1st Compressor 2.9 2.1 5.0 
2nd Compressor 2.3 - 2.3 
3rd Compressor 2.3 - 2.3 

 The estimated costs in millions of 2001 $US. 
 
 
 

Table B.4 – 4-Compressor (Centrifugal) Arrangement Costs 
 

  
 

Cost ($US) 

Development/ 
Non-recurring 

Cost ($US) 

 
 

Total ($US) 
1st Compressor 2.6 2.1 4.7 
2nd Compressor 1.8 - 1.8 
3rd Compressor 1.8 - 1.8 
4th Compressor 1.8 - 1.8 

 The estimated costs in millions of 2001 $US. 
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  Table B.5 – Five-Stage Centrifugal Compressor Design Data 
 
Design 
Point 

Inlet Stag. Pressure 2074.098 kPa 

 Inlet Stag. Temperature 311.9 K 
 Rotational speed  5900 rpm 
 Mass flow 136.42 kg/s 
 Rel. flow coefficient 0.755 
 Pressure ratio 1.566 
 Temperature ratio 1.231 
 Effic. (w/o IGV losses) 86.054 percent 
 Required power 51048.47 kW 
 Effic. (with IGV losses) 86.054 percent 
   
O ff-Design Performance 
Speed 
ratio 

Rel. Flow Coefficient Mass 
flow 
(kg/s) 

Press-
ure 
ratio 

Tempera-
ture ratio 

Efficiency 
w/o IGV 
Losses 

Power 
required 

Effic. 
with 
IGV 
losses 

1 0.441 80.488 1.616 1.272 79.59 35408.45 79.59 
1 0.5 91.538 1.615 1.264 81.485 39165.38 81.485 
1 0.56 102.588 1.609 1.256 83.079 42605.82 83.079 
1 0.622 113.638 1.599 1.248 84.376 45718.61 84.376 
1 0.685 124.688 1.585 1.24 85.364 48492.34 85.364 
1 0.751 135.738 1.568 1.232 86.053 50913.43 86.053 
1 0.819 146.788 1.544 1.223 86.111 52929.28 86.111 
1 0.892 157.838 1.514 1.213 85.551 54543.84 85.551 
1 0.968 168.888 1.481 1.204 84.382 55736.92 84.382 
1 1.049 179.938 1.445 1.194 82.857 56503.89 82.857 
1 80.8 190.988 1.408 1.184 80.852 56814.26 80.852 

        
Speed 
ratio 

Rel. Flow Coefficient Mass 
flow 
(kg/s) 

Press-
ure 
ratio 

Tempera-
ture ratio 

Efficiency 
w/o IGV 
Losses 

Power 
required 

Effic. 
with 
IGV 
losses 

0.95 0.429 76.395 1.549 1.245 79.709 30261.17 79.709 
0.95 0.488 86.9 1.548 1.238 81.609 33458 81.609 
0.95 0.547 97.404 1.542 1.231 83.198 36379.39 83.198 
0.95 0.607 107.908 1.532 1.223 84.48 39016.39 84.48 
0.95 0.668 118.413 1.519 1.216 85.442 41359.7 85.442 
0.95 0.732 128.917 1.503 1.208 86.058 43396.9 86.058 
0.95 0.798 139.421 1.481 1.2 86.099 45091.83 86.099 
0.95 0.869 149.926 1.455 1.191 85.406 46440.43 85.406 
0.95 0.943 160.43 1.425 1.183 84.185 47435.35 84.185 
0.95 1.019 170.934 1.393 1.174 82.601 48069.4 82.601 
0.95 1.1 181.439 1.36 1.164 80.53 48318.99 80.53 
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 Table B.5 – Five-Stage Centrifugal Compressor Design Data (cont’s) 
 
Speed 
ratio 

Rel. Flow Coefficient Mass 
flow 
(kg/s) 

Press-
ure 
ratio 

Tempera-
ture ratio 

Efficiency 
w/o IGV 
Losses 

Power 
required 

Effic. 
with 
IGV 
losses 

0.90 0.409 70.938 1.487 1.22 79.533 25259.27 79.533 
0.90 0.466 81.033 1.485 1.214 81.506 28025.5 81.506 
0.90 0.525 91.129 1.48 1.207 83.149 30548.52 83.149 
0.90 0.584 101.224 1.472 1.2 84.466 32820.93 84.466 
0.90 0.644 111.319 1.46 1.193 85.446 34835.31 85.446 
0.90 0.707 121.414 1.445 1.186 86.034 36580.57 86.034 
0.90 0.772 131.509 1.425 1.179 86.069 38031.64 86.069 
0.90 0.84 141.604 1.401 1.171 85.301 39181.53 85.301 
0.90 0.912 151.699 1.374 1.163 84.025 40027.38 84.025 
0.90 0.986 161.794 1.346 1.155 82.371 40562.32 82.371 
0.90 1.063 171.889 1.316 1.146 80.209 40767.25 80.209 

        
Speed 
ratio 

Rel. Flow Coefficient Mass 
flow 
(kg/s) 

Press-
ure 
ratio 

Tempera-
ture ratio 

Efficiency 
w/o IGV 
Losses 

Power 
required 

Effic. 
with 
IGV 
losses 

0.85 0.387 65.482 1.429 1.197 79.305 20843.61 79.305 
0.85 0.443 75.167 1.428 1.191 81.363 23223.03 81.363 
0.85 0.501 84.853 1.423 1.185 83.069 25389.2 83.069 
0.85 0.559 94.539 1.416 1.179 84.429 27336.13 84.429 
0.85 0.618 104.225 1.405 1.172 85.434 29057.9 85.434 
0.85 0.679 113.911 1.391 1.166 86.006 30544.75 86.006 
0.85 0.742 123.597 1.374 1.159 86.066 31784.32 86.066 
0.85 0.809 133.282 1.352 1.152 85.173 32755.65 85.173 
0.85 0.878 142.968 1.328 1.145 83.872 33472.47 83.872 
0.85 0.949 152.654 1.303 1.137 82.147 33922.36 82.147 
0.85 1.023 162.34 1.277 1.13 79.891 34091.25 79.891 

        
Speed 
ratio 

Rel. Flow Coefficient Mass 
flow 
(kg/s) 

Press-
ure 
ratio 

Tempera-
ture ratio 

Efficiency 
w/o IGV 
Losses 

Power 
required 

Effic. 
with 
IGV 
losses 

0.5 0.259 38.198 1.139 1.067 79.753 4158.666 79.753 
0.5 0.297 43.791 1.138 1.065 81.794 4614.844 81.794 
0.5 0.335 49.384 1.136 1.063 83.439 5026.47 83.439 
0.5 0.373 54.977 1.133 1.061 84.687 5393.121 84.687 
0.5 0.412 60.57 1.129 1.058 85.506 5714.344 85.506 
0.5 0.451 66.164 1.124 1.056 85.824 5989.362 85.824 
0.5 0.491 71.757 1.118 1.054 85.503 6218.171 85.503 
0.5 0.531 77.35 1.111 1.051 84.369 6399.457 84.369 
0.5 0.572 82.943 1.104 1.049 82.886 6534.759 82.886 
0.5 0.613 88.537 1.096 1.046 80.979 6623.057 80.979 
0.5 0.655 94.13 1.088 1.044 78.557 6663.258 78.557 
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Five-stage centrifugal compressor characteristics
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Figure B.1 – Estimated Pressure Ratio Versus Corrected Flow for a Five-Stage Centrifugal 
Compressor 
 
 

Five-stage centrifugal compressor characteristics
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Figure B.2 – Estimated Isentropic Efficiency Versus Corrected Flow for a Five-Stage 
Centrifugal Compressor 
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ESTIMATED 5-STAGE CENTRIFUGAL COMPRESSOR CHARACTERIZAION
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Figure B.3 – Estimated Pressure Coefficient Versus Corrected Flow Normalized to Five-
Stage Compressor Design Point 
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Figure B.4 – Estimated Work Coefficient Versus Corrected Flow Normalized to Five-Stage 
Compressor Design Point 
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Table B.6 – Numbers and Sizes of Axi-centrifugal Compressors 

 
Number of 

Compressors 
Stages per 

Compressor 
Optimal 

Shaft Speed 
Casing Inner 

Diameter 
Compressor 

Casing Length 
4 8+1 8000 rpm 1.0 m/2.6m 3.0 m 

 

 

  Table B.7 --  Four- Compressor (Axi-centrifugal) Costs 
 

  
Cost ($US) 

Development/ 
Non-recurring Cost 

 
Total ($US) 

1st Compressor 3.3 10.2 13.5 
2nd Compressor 2.3 - 2.3 
3rd Compressor 2.3 - 2.3 
4th Compressor 2.3 - 2.3 

 The estimated costs in millions of 2001 $US. 
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Figure B.5 - Estimated Pressure Coefficient Versus Corrected Flow Normalized  

to an 8+1 Axi-Centrifugal Compressor Design Point 
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Figure B.6 - Estimated Work Coefficient Versus Corrected Flow Normalized  

to an 8+1 Axi-Centrifugal Compressor Design Point 
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Figure B.7 - Estimated Isentropic Efficiency Versus Corrected Flow Normalized  

to an 8+1 Axi-Centrifugal Compressor Design Point 
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Figure B.8 – Flow Coefficient Per Axial Stage Rotor and Axial Stage Stator 

at a Tip Speed of 319.2 M/S 
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Figure B.9 – Meridional View of an Axi-Centrifugal Flowpath 
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Table B.8 – Sizes of HP Turbine and LP Turbine 
 

Number of 
Turbines 

Stages per 
Turbine 

Optimal 
Shaft Speed 

Casing Inner 
Diameter 

Compressor 
Casing Length 

2 4 8000 rpm 1.3 m 2.0 m 
 

 

 
Table B.9 – HP Turbine and LP Turbine Costs 

 
  

Recurring 
Cost ($US) 

Development/ 
Non-recurring 

Cost ($US) 

 
 

Total ($US) 
1st Turbine 6.0 2.6 8.6 
2nd Turbine 5.0 - 5.0 

 The estimated costs in millions of 2001 $US. 
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Figure B.10 – Estimated Work and Pressure Coefficients Versus Flow Coefficient 

Normalized to the Design Point Performance of a Four-Stage Axial Turbine 
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ESTIMATED 5-STAGE TURBINE PERFORMANCE CHARACTERIZATION
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Figure B.11 – Estimated Isentropic Efficiency Versus Flow Coefficient Normalized to the 

Design Point Performance of a Four-Stage Axial Turbine 

 

 

 
Table B.10 –Power Turbine Size 

 
Number of 
Turbines 

Stages per 
Turbine 

Optimal 
Shaft Speed 

Casing Inner 
Diameter 

Compressor 
Casing Length 

1 23 3600 rpm 2.9 m 6.8 m 
 

 

Table B.11 – Power Turbine Costs 
 

  
Recurring 

Cost ($US) 

Development/ 
Non-recurring 

Cost ($US) 

 
 

Total ($US) 
1st Turbine 12 3.1 15.1 

 The estimated costs in millions of 2001 $US. 
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Table B.12  Five-Stage Centrifugal Compressor Design Input Data  
 
 
Stage  1                       
   Input Review  
 
 Compressor Stage Elements  
 SIMPLE IGV            
 IMPELLER              
 VANELESS SPACE        
 DESWIRL SYSTEM        
 
 Compressor Geometry  
 
 Igv  
 Inlet Flange Radius (Hub) =     .00000  m    
 Inlet Flange Radius (Shroud) =    .31500  m   
 
 Impeller  
 Inlet Radius (Hub) =     .14200  m    
 Inlet radius (Shroud) =     .37000  m   
 Inlet blade angle (Hub) =     -42.00      
 Inlet blade angle (Shroud) =     -60.00 deg  
 Number of blades =        17.   
 Inlet av normal blade thkns =     .00001  m 
 Inlet width =     .22880  m    
 LE tip included angle =        .00 deg 
 Normal geom throat area =    .23157  m2  
 Shroud clearance =    .000800  m   
 Axial length =     .22800  m      
 Tip Radius =     .57000  m    
 Tip Width =     .12200  m   
 Exit Blade Angle =     -40.00 deg  
 Exit Av Normal Blade Thkns =     .02580  m   
 
 Vaneless Diffuser  
 Radius Ratio Diffuser Width/Impeller Tip Width 
     1.0000     1.0000 
     1.4500     1.0000 
 
 Deswirl Vanes  
 Radius at extra station  
     /imp tip radius =    1.82000      
 Inlet radius/Imp tip radius =    1.44946      



 Width at extra station =    1.00000      
 Inlet width =    1.00000      
 Exit radius/Imp tip radius =     .50108      
 Exit width =    1.36348      
 Turning angle at inlet =  180.000 deg 
 Turning angle at exit =  -90.000 deg 
 Blade angle at inlet set equal to flow angle 
 Blade angle at exit =     .000 deg 
 Radius ratio of turning (5-7) =    1.500 
 Radius ratio of turning (7-8) =  999.000 
 Meridional length (5-7) =     .00100  m   
 Meridional length (7-8) =     .20000  m   
 Number of vanes (stations 7-8) =   16.0 
 Subtended angle (LE to TE) =   25.000 deg 
 Trailing edge (Unblocked 
         /Total) area ratio, station 8 =   .00000 
 
 Stage  2                                                                          
 
   Input Review  
 
 Compressor Stage Elements  
 IMPELLER              
 VANELESS SPACE        
 DESWIRL SYSTEM        
 Compressor Geometry  
 
 Impeller  
 Inlet Radius (Hub) =     .14200  m    
 Inlet radius (Shroud) =     .36600  m   
 Inlet blade angle (Hub) =     -42.00      
 Inlet blade angle (Shroud) =     -60.00 deg      
 Number of blades =        17.   
 Inlet av normal blade thkns =     .00001  m   
 Inlet width =     .22480  m  
 LE tip included angle =        .00 deg 
 Normal geom throat area =    .22574  m2  
 Shroud clearance =    .000800  m   
 Axial length =     .22800  m      
 Tip Radius =     .57000  m    
 Tip Width =     .11600  m   
 Exit Blade Angle =     -40.00 deg  
 Exit Av Normal Blade Thkns =     .02580  m   
 
 Vaneless Diffuser  
 Radius Ratio Diffuser Width/Impeller Tip Width 
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     1.0000     1.0000 
     1.4500     1.0000 
 
 
 Deswirl Vanes  
 Radius at extra station  
     /imp tip radius =    1.82000      
 Inlet radius/Imp tip radius =    1.44946      
 Width at extra station =    1.00000      
 Inlet width =    1.00000      
 Exit radius/Imp tip radius =     .50108      
 Exit width =    1.36348      
 Turning angle at inlet =  180.000 deg 
 Turning angle at exit =  -90.000 deg 
 Blade angle at inlet set equal to flow angle 
 Blade angle at exit =     .000 deg 
 Radius ratio of turning (5-7) =    1.500 
 Radius ratio of turning (7-8) =  999.000 
 Meridional length (5-7) =     .00100  m   
 Meridional length (7-8) =     .20000  m   
 Number of vanes (stations 7-8) =   16.0 
 Subtended angle (LE to TE) =   25.000 deg 
 Trailing edge (Unblocked 
         /Total) area ratio, station 8 =   .00000 
  
 
Stage  3                                                      
 
   Input Review  
 
 Compressor Stage Elements  
 IMPELLER              
 VANELESS SPACE        
 DESWIRL SYSTEM        
 
 
 Compressor Geometry  
 
 Impeller  
 Inlet Radius (Hub) =     .14200  m    
 Inlet radius (Shroud) =     .36000  m   
 Inlet blade angle (Hub) =     -42.00      
 Inlet blade angle (Shroud) =     -60.00 deg      
 Number of blades =        17.   
 Inlet av normal blade thkns =     .00001  m   
 Inlet width =     .21880  m   
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 DESWIRL SYSTEM        

 LE tip included angle =        .00 deg 
 Normal geom throat area =    .21712  m2     
 Shroud clearance =    .000800  m   
 Axial length =     .22800  m      
 Tip Radius =     .57000  m    
 Tip Width =     .11100  m   
 Exit Blade Angle =     -40.00 deg  
 Exit Av Normal Blade Thkns =     .02580  m   
 
 Vaneless Diffuser  
 Radius Ratio Diffuser Width/Impeller Tip Width 
     1.0000     1.0000 
     1.4500     1.0000 
 
 
 Deswirl Vanes  
 Radius at extra station  
     /imp tip radius =    1.82000      
 Inlet radius/Imp tip radius =    1.44946      
 Width at extra station =    1.00000      
 Inlet width =    1.00000      
 Exit radius/Imp tip radius =     .50108      
 Exit width =    1.36348      
 Turning angle at inlet =  180.000 deg 
 Turning angle at exit =  -90.000 deg 
 Blade angle at inlet set equal to flow angle 
 Blade angle at exit =     .000 deg 
 Radius ratio of turning (5-7) =    1.500 
 Radius ratio of turning (7-8) =  999.000 
 Meridional length (5-7) =     .00100  m   
 Meridional length (7-8) =     .20000  m   
 Number of vanes (stations 7-8) =   16.0 
 Subtended angle (LE to TE) =   25.000 deg 
 Trailing edge (Unblocked 
         /Total) area ratio, station 8 =   .00000 
 
 
 
Stage  4                                                                                                           
 
   Input Review  
 
 Compressor Stage Elements  
 IMPELLER              
 VANELESS SPACE        
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         /Total) area ratio, station 8 =   .00000 

 
 Compressor Geometry  
 
 Impeller  
 Inlet Radius (Hub) =     .14200  m    
 Inlet radius (Shroud) =     .35600  m   
 Inlet blade angle (Hub) =     -42.00      
 Inlet blade angle (Shroud) =     -60.00 deg      
 Number of blades =        17.   
 Inlet av normal blade thkns =     .00001  m   
 Inlet width =     .21480  m   
 LE tip included angle =        .00 deg 
 Normal geom throat area =    .21145  m2  
 Shroud clearance =    .000800  m   
 Axial length =     .22800  m      
 Tip Radius =     .56000  m    
 Tip Width =     .10800  m   
 Exit Blade Angle =     -40.00 deg  
 Exit Av Normal Blade Thkns =     .02580  m   
 
 Vaneless Diffuser  
 Radius Ratio Diffuser Width/Impeller Tip Width 
     1.0000     1.0000 
     1.4500     1.0000 
 
 
 Deswirl Vanes  
 Radius at extra station  
     /imp tip radius =    1.82000      
 Inlet radius/Imp tip radius =    1.44946      
 Width at extra station =    1.00000      
 Inlet width =    1.00000      
 Exit radius/Imp tip radius =     .50108      
 Exit width =    1.36348      
 Turning angle at inlet =  180.000 deg 
 Turning angle at exit =  -90.000 deg 
 Blade angle at inlet set equal to flow angle 
 Blade angle at exit =     .000 deg 
 Radius ratio of turning (5-7) =    1.500 
 Radius ratio of turning (7-8) =  999.000 
 Meridional length (5-7) =     .00100  m   
 Meridional length (7-8) =     .20000  m   
 Number of vanes (stations 7-8) =   16.0 
 Subtended angle (LE to TE) =   25.000 deg 
 Trailing edge (Unblocked 



Stage  5                                                    
 
   Input Review  
 
 Compressor Stage Elements  
 IMPELLER              
 VANELESS SPACE        
 SPECIFIED LOSS-CONST  
 
 
 Compressor Geometry  
 
 Impeller  
 Inlet Radius (Hub) =     .14200  m    
 Inlet radius (Shroud) =     .35000  m   
 Inlet blade angle (Hub) =     -42.00      
 Inlet blade angle (Shroud) =     -60.00 deg      
 Number of blades =        17.   
 Inlet av normal blade thkns =     .00001  m   
 Inlet width =     .20880  m    
 LE tip included angle =        .00 deg 
 Normal geom throat area =    .20307  m2     
 Shroud clearance =    .000800  m   
 Axial length =     .22800  m      
 Tip Radius =     .57000  m    
 Tip Width =     .10100  m   
 Exit Blade Angle =     -40.00 deg  
 Exit Av Normal Blade Thkns =     .02580  m   
 
 Vaneless Diffuser  
 Radius Ratio Diffuser Width/Impeller Tip Width 
     1.0000     1.0000 
     1.4500     1.0000 
 
 
  Exit  
 Discharge Pipe Entry Area =    .24200 m2    
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Appendix C Intermediate Heat Exchanger Assembly Design 
 

The IHX design using a plate-fin configuration consists of 18 identical modules. The layout 

of the plate-fin IHX was designed by Mr. Pete Stahle of MIT. 6 Vessels are arranged to 

envelop the 18 modules. Each vessel holds three IHX modules as shown in Figures C.1 to 

C.4. The vessel is 90.5 in. in diameter, 2 in. in thickness, 240 in. in height and 90,000 lb in 

weight. The arrangement of three modules in one vessel is shown in Figure C.2. Figure C.3 

shows the primary side internals; the modules are suspended to accommodate thermal 

expansion. Figure C.4 illustrates the secondary side internals. Since the secondary side is an 

ASME code III pressure boundary, the temperature limitation is 427°C. Thus insulation and 

a cooling stream must be provided to ensure the pressure boundary temperature is lower 

than the limitation. The IHX assembly is shown in Figures C.5 and C.6. Figure C.7 

demonstrates the assembly piping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure C.1 – IHX unit pressure vessel 
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   Figure – C.2 Plate-fin grouping in one vessel 
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  Figure C.3 – Primary side internals 
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   Figure C.4 – Secondary side internals 
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Figure C.5 – IHX assembly isometric view  
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    Figure C.6 – IHX assembly plan view 

 

 

 

 

 

     Figure C.7 – IHX assembly piping 
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Appendix D   Thermodynamic and transport properties of helium 
 

Thermodynamic and Transport Properties of Helium 

(273 – 1500 °K, 0.1 – 10 MPa) 

1. Gas constant 

         R = 2077.22 (J/kg °K) 

Uncertainty 

< 0.05% 

2. Equation of State 

PV=RT+PB(T)    Where 

)1(410*409120.95

)/3(310*739470.24

)1(210*420680.33

)/3(410*528079.92

)/3(410*489433.91

51
4

31
21)(

−−=

−=

−−=

−=

−=

+
+

−
+=

KC

kgmC

KC

kgmC

kgmC

TC
C

TC
CCTB

 

  

3. Compressibility     )(1 TB
RT
PZ +=  

 

< 1.0% 

4. Specific Heat 

    CP=5193.0 (J/kg K) 

     Cv=3116.0 (J/kg K) 

 

< 0.5% 

< 0.5% 

5. Enthalpy  PTB
dT
dTTBTPCHH )]()([0 −+=−  

 

< 1.0% 

6. Entropy 

)()0/ln()0/ln(0 TB
dT
dPPPRTTPCSS −−=−  

 

< 1.0% 

7. Sonic Velocity 

RTZc γ=  

 

< 1.0% 

       8. Viscosity 

       

 

ση=1.5%  )2/(667.0710*953.3 msNT −−=η  

9. Thermal Conductivity 

 k = 2.774*10-3T0.701 (W/m K) 

 

σk=2.4% 

       10. Prandtl Number 

        014.0740.0Pr −== T
k

PCη  where T in (K) 

 

< 3.0% 
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Appendix F  Nomenclature 

 

Most of the nomenclature is defined when it is introduced or else is obvious from the 

context of to use. Here it is summarized for convenience. 

 

Roman Letter Symbols 

A Cross section area 

Ac Empty core cross-sectional area 

C Velocity 

Ci Concentration of delayed precursors of group I 

Cp Specific heat at constant pressure 

pC  Average specific heat at constant pressure 

Cv Specific heat at constant volume 

D Diameter 

De Hydraulic diameter 

DH Heated diameter 

dp Pebble bed diameter 

e(t) Error signal of PI controller 

f Friction factor 

h Enthalpy 

h Heat transfer coefficient 

H Height 

I Concentration of Iodine 

I Inertia 

K Coefficient 

KP Proportional gain of PI controller 

k Conductivity 

keff Effective multiplication factor 

L Nodal axial height 

L Pipe length 
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Lθ Heat transfer circumferential length 

m  Mass flowrate 

N Turbomachinery rotational speed 

n Heat exchanger time constant 

P Power 

PD Percentage pressure loss 

PR Pressure ratio 

PRc Compressor pressure ratio 

p Pressure 

Q Heat 

q’ Linear power 

R Radius 

R Gas constant 

S Neutron source 

T Temperature 

Ti Tuning parameter of PI controller 

t Time 

U Overall conductance of the heat transfer 

U Turbomachinery blade tip speed 

u(t) Output singnal of a PI controller 

Wc Compressor consumed power 

Wt Turbine generated power 

X Concentration of Xe 

 

 

Greek Letter Symbols 

αT Rate of reactivity change per unit temperature change 

β Total effective delayed neutron fraction 

βi Effective delayed neutron fraction for group i 

∆ Denotes difference 

 229



Λ Prompt neutron life time 

Σf Macroscopic fission cross section  

Σa Macroscopic absorption cross section 

X
aΣ  Macroscopic absorption cross section of Xe 

δ Cavity width 

ε Emmisivity 

ε Pebble bed void fraction (eqn. 4.16) 

εhx Heat exchanger effectiveness 

γ Cp/Cv 

γI Effective fraction of Iodine 

γX Effective fraction of Xe 

λ Average decay constant 

λi Decay constant of delayed precursors of group I 

ηcycle Cycle efficiency 

ηm Mechanical efficiency 

ηnet Plant net efficiency 

ηpc Compressor polytropic efficiency 

ηpt Turbine polytropic efficiency 

ηsc Compressor isentropic efficiency 

ηst Turbine isentropic efficiency 

φ Neutron flux density 

σ Stefan-Boltzman constant 

σf Microscopic fission cross section 

X
aσ  Microscopic absorption cross section of Xe 

µ Dynamic viscosity 

ρ Density 

ρ Reactivity 

τ Heat exchanger time constant 
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ωf Usable energy released per fission event 

υ Neutron speed 

 

 

 

Subscripts 

0 Stagnation 

1 Inlet 

2 Outlet 

c Cold side 

cor Corrected 

h Hot side 

min Minimum 

s Isentropic 

p Polytropic 

 

 

 

Dimensionless Groupings 

Re Reynolds number 

Pr Prandtl number 

Nu Nusselt number 
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